Research progress in the synthesis and application of magnetic self-healing polymer composites

被引:4
|
作者
Li, Wenyao [1 ]
Gu, Han [1 ]
Liu, Zhihao [1 ]
Zhang, Haiwei [1 ]
Jiang, Li [1 ]
Zhou, Xing [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Chem & Life Sci, Suzhou 215009, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic self-healing polymer composites; Self-healing polymers; Magnetic particles; Magneto-driven; Magnetic additives; SHAPE-MEMORY; FE3O4; NANOPARTICLES; CROSS-LINKING; HYDROGEL; POLYURETHANE; NANOCOMPOSITES; FIBER; RESTORATION; PERFORMANCE; ELASTOMER;
D O I
10.1016/j.eurpolymj.2023.112633
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In recent years, magnetic self-healing polymer composites (MSHPCs) have attracted extensive attention. Since the concept of self-healing polymer was put forward in the 1980s, its synthesis, self-healing mechanism research and engineering application have been developed vigorously and gradually mature. With the development of nanotechnology, various functionalized magnetic particles (MPs) have been synthesized and applied. MSHPCs obtained by combining MPs with self-healing polymer materials (SHPMs) have excellent mechanical, magnetic and self-healing properties, and may also have great electrical conductivity and biocompatibility. Based on the research cases in recent years, the manuscript summarizes the self-healing principle of MSHPCs based on magnetic additives and self-healing polymer chains after adding MPs, and briefly describes the functional advantages and potential of commonly used Fe3O4 magnetic nanoparticles (MNPs), multi-metal ferrite, Nd2Fe14B and other materials for MSHPCs. The methods to improve the interfacial compatibility of inorganic particles and organic polymers are summarized. Finally, the advantages and disadvantages of MSHPCs applied in biology, medicine, magneto-driven actuators and soft electronic devices are evaluated and new ideas for future development are put forward.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Magnetic Self-Healing Composites: Synthesis and Applications
    Cerdan, Kenneth
    Moya, Carlos
    Van Puyvelde, Peter
    Bruylants, Gilles
    Brancart, Joost
    MOLECULES, 2022, 27 (12):
  • [2] Self-Healing Polymer Composites: Prospects, Challenges, and Applications
    Hia, Iee Lee
    Vahedi, Vahdat
    Pasbakhsh, Pooria
    POLYMER REVIEWS, 2016, 56 (02) : 225 - 261
  • [3] Research progress on self-healing polymer/graphene anticorrosion coatings
    Cui, Gan
    Zhang, Chuchu
    Wang, Ailing
    Zhou, Xin
    Xing, Xiao
    Liu, Jianguo
    Li, Zili
    Chen, Qiqi
    Lu, Qinglong
    PROGRESS IN ORGANIC COATINGS, 2021, 155
  • [4] Self-Healing of Polymers and Polymer Composites
    Irzhak, Vadim I.
    Uflyand, Igor E.
    Dzhardimalieva, Gulzhian I.
    POLYMERS, 2022, 14 (24)
  • [5] Progress in Research of Self-Healing Natural Polymer Hydrogels
    Qu J.
    Che H.
    Li J.
    Xu J.
    Zhu X.
    Xu B.
    Wang X.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2022, 38 (10): : 158 - 167
  • [6] Progress in Self-Healing Fiber-Reinforced Polymer Composites
    Cohades, Amael
    Branfoot, Callum
    Rae, Steven
    Bond, Ian
    Michaud, Veronique
    ADVANCED MATERIALS INTERFACES, 2018, 5 (17):
  • [7] Research and application progress of photo-induced self-healing polymers
    Liu, Changhui
    Xu, Yi
    Shi, Yanlong
    Jiang, Zongjie
    Wang, Peiyue
    Wei, Jixuan
    Yang, Yunyun
    MATERIALS TODAY COMMUNICATIONS, 2025, 43
  • [8] Optimized synthesis of isocyanate microcapsules for self-healing application in epoxy composites
    Sun, Yong
    Wang, Shugang
    Dong, Xiaosu
    Liang, Yuntao
    Lu, Wei
    He, Zhenglong
    Qi, Guansheng
    HIGH PERFORMANCE POLYMERS, 2020, 32 (06) : 669 - 680
  • [9] Recent Achievements of Self-Healing Graphene/Polymer Composites
    Du, Yongxu
    Li, Dong
    Liu, Libin
    Gai, Guangjie
    POLYMERS, 2018, 10 (02)
  • [10] Electrically Functional Self-Healing Polymers: Design, Assessment, and Progress
    Geng, Yuhao
    Zhong, Wei
    Zhou, Shuai
    Yao, Bowen
    Fu, Jiajun
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2023, 308 (09)