A Decomposition-based Multi-modal Multi-objective Evolutionary Algorithm with Problem Transformation into Two-objective Subproblems

被引:1
|
作者
Nojima, Yusuke [1 ]
Fujii, Yuto [2 ]
Masuyama, Naoki [1 ]
Liu, Yiping [3 ]
Ishibuchi, Hisao [4 ]
机构
[1] Osaka Metropolitan Univ, Sakai, Osaka, Japan
[2] Osaka Prefecture Univ, Sakai, Osaka, Japan
[3] Hunan Univ, Changsha, Peoples R China
[4] Southern Univ Sci & Technol, Shenzhen, Peoples R China
来源
PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION | 2023年
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
Multi-modal multi-objective evolutionary algorithm; MOEA/D; OPTIMIZATION;
D O I
10.1145/3583133.3593950
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In some real-world multi-objective optimization problems, Pareto optimal solutions with different design parameter values are mapped to the same point with the same objective function values. Such problems are called multi-modal multi-objective optimization problems (MMOPs). For MMOPs, multi-modal multi-objective evolutionary algorithms (MMOEAs) have been developed for approximating both the Pareto front (PF) and the Pareto sets (PSs). However, most MMOEAs use population convergence in the objective space as the primary evaluation criterion. They do not necessarily have a high PS approximation ability. To better approximate both PF and PSs, we propose a decomposition-based MMOEA where an MMOP is transformed into a number of two-objective subproblems. One objective of each subproblem is a scalarizing function defined by a weight vector for the original MMOP, while the other is defined by a decision space diversity. Experimental results show a high approximation ability of the proposed method for both PF and PSs.
引用
收藏
页码:399 / 402
页数:4
相关论文
共 50 条
  • [31] Diversity Improvement in Decomposition-Based Multi-Objective Evolutionary Algorithm for Many-Objective Optimization Problems
    He, Zhenan
    Yen, Gary G.
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 2409 - 2414
  • [32] A stopping criterion for decomposition-based multi-objective evolutionary algorithms
    K. Mohaideen Abdul Kadhar
    S. Baskar
    Soft Computing, 2018, 22 : 253 - 272
  • [33] A decomposition-based archiving approach for multi-objective evolutionary optimization
    Zhang, Yong
    Gong, Dun-wei
    Sun, Jian-yong
    Qu, Bo-yang
    INFORMATION SCIENCES, 2018, 430 : 397 - 413
  • [34] A stopping criterion for decomposition-based multi-objective evolutionary algorithms
    Kadhar, K. Mohaideen Abdul
    Baskar, S.
    SOFT COMPUTING, 2018, 22 (01) : 253 - 272
  • [35] Evolutionary Multi-modal Optimization with the Use of Multi-objective Techniques
    Siwik, Leszek
    Drezewski, Rafal
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING ICAISC 2014, PT I, 2014, 8467 : 428 - 439
  • [36] A Decomposition based Memetic Multi-objective Algorithm for Continuous Multi-objective Optimization Problem
    Wang, Na
    Wang, Hongfeng
    Fu, Yaping
    Wang, Lingwei
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 896 - 900
  • [37] A Multi-modal Multi-objective Optimization Algorithm Based on Adaptive Search
    Li Z.-S.
    Song Z.-Y.
    Hua Y.-Q.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2023, 44 (10): : 1408 - 1415
  • [38] On the Potential of Multi-objective Automated Algorithm Configuration on Multi-modal Multi-objective Optimisation Problems
    Preuss, Oliver Ludger
    Rook, Jeroen
    Trautmann, Heike
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2024, PT I, 2024, 14634 : 305 - 321
  • [39] A multi-objective evolutionary algorithm based on decomposition and constraint programming for the multi-objective team orienteering problem with time windows
    Hu, Wanzhe
    Fathi, Mahdi
    Pardalos, Panos M.
    APPLIED SOFT COMPUTING, 2018, 73 : 383 - 393
  • [40] An Improved Decomposition-based Multi-objective Evolutionary Algorithm with Enhanced Differential Evolution Strategy
    Xie, Yingbo
    Hou, Ying
    Qiao, Junfei
    Yin, Baocai
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2245 - 2251