Bayesian weighted random forest for classification of high-dimensional genomics data

被引:7
|
作者
Olaniran, Oyebayo Ridwan [1 ]
Abdullah, Mohd Asrul A. [2 ]
机构
[1] Univ Ilorin, Dept Stat, Ilorin, Nigeria
[2] UTHM, Dept Math & Stat, FAST, Parit Raja, Johor, Malaysia
关键词
Bayesian; High-dimensional; Genomic data; Classifcation; Random forest; VARIABLE SELECTION; BREAST-CANCER; GENE; PREDICTION; TUMOR; PATTERNS; LEUKEMIA;
D O I
10.1016/j.kjs.2023.06.008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a full Bayesian weighted probabilistic model is developed for random classification trees. The new model Bayesian Weighted Random Classification Forest (BWRCF) arises from the modification of the existing random classification forest in two ways. Firstly, the tree terminal node estimation procedure is replaced with a Bayesian estimation approach. Secondly, a new variable ranking procedure is developed and then hybridized with BWRCF to tackle the high-dimensionality issues. The performance of the proposed method is analyzed using simulated and real-life high-dimensional microarray datasets based on holdout accuracy and misclassification error rates. The results of the analyses showed that the proposed BWRCF is robust in terms of its ability to withstand moderate to large high-dimensionality scenarios. In addition, BWRCF also has improved predictive and efficiency abilities over selected competing methods.
引用
收藏
页码:477 / 484
页数:8
相关论文
共 50 条
  • [21] A computationally fast variable importance test for random forests for high-dimensional data
    Janitza, Silke
    Celik, Ender
    Boulesteix, Anne-Laure
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2018, 12 (04) : 885 - 915
  • [22] Knowledge-slanted random forest method for high-dimensional data and small sample size with a feature selection application for gene expression data
    Cantor, Erika
    Guauque-Olarte, Sandra
    Leon, Roberto
    Chabert, Steren
    Salas, Rodrigo
    BIODATA MINING, 2024, 17 (01):
  • [23] Random forests for high-dimensional longitudinal data
    Capitaine, Louis
    Genuer, Robin
    Thiebaut, Rodolphe
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (01) : 166 - 184
  • [24] Fuzzy Forests: Extending Random Forest Feature Selection for Correlated, High-Dimensional Data
    Conn, Daniel
    Ngun, Tuck
    Li, Gang
    Ramirez, Christina M.
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (09):
  • [25] Sparse Bayesian variable selection in kernel probit model for analyzing high-dimensional data
    Yang, Aijun
    Tian, Yuzhu
    Li, Yunxian
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2020, 35 (01) : 245 - 258
  • [26] Ensemble of penalized logistic models for classification of high-dimensional data
    Ijaz, Musarrat
    Asghar, Zahid
    Gul, Asma
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (07) : 2072 - 2088
  • [27] A Compressive Classification Framework for High-Dimensional Data
    Tabassum, Muhammad Naveed
    Ollila, Esa
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2020, 1 : 177 - 186
  • [28] CLASSIFICATION OF HIGH-DIMENSIONAL DATA: A RANDOM-MATRIX REGULARIZED DISCRIMINANT ANALYSIS APPROACH
    Ye, Bin
    Liu, Peng
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2019, 15 (03): : 955 - 967
  • [29] Adaptive Bayesian density regression for high-dimensional data
    Shen, Weining
    Ghosal, Subhashis
    BERNOULLI, 2016, 22 (01) : 396 - 420
  • [30] Sparse Bayesian multinomial probit regression model with correlation prior for high-dimensional data classification
    Yang Aijun
    Jiang Xuejun
    Liu Pengfei
    Lin Jinguan
    STATISTICS & PROBABILITY LETTERS, 2016, 119 : 241 - 247