Strain-induced electronic structures and band-gap of few-layer AgInP2S6

被引:0
作者
Zhen, Jiapeng [1 ,2 ]
Huang, Qiushi [3 ]
Liu, Ying [1 ,2 ]
Luo, Xinyu [1 ,2 ]
Zheng, Xiande [1 ,2 ]
Guo, Silin [1 ,2 ]
Qiu, Jing [1 ,2 ]
Liu, Guanjun [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 400713, Hunan, Peoples R China
[2] Natl Univ Def Technol, Sci & Technol Integrated Logist Support Lab, Changsha 400713, Hunan, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100093, Peoples R China
基金
中国国家自然科学基金;
关键词
strains; band-gap; electronic structure; few-layer; MONOLAYER; TRANSITION; STACKING;
D O I
10.1088/1361-6528/acf6c5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The band gap and mechanical control ability of two-dimensional materials largely determine the application value of two-dimensional devices in optical and electronic properties, so the bandgap controllability of two-dimensional materials broadens the application range of multi-functional devices. In the layered van der Waals (vdW) material AgInP2S6, the band gap can be adjusted by the number of layers and flexible strain, and the few layers AgInP2S6 have discrete band gap values, which are also relevant for optoelectronic applications. In the strain range of up to 2.7% applied, the band gap can be adjusted, and the film is relatively stable under strain. We further analyzed the physical mechanism of flexible strain band gap regulation and found that strain-regulation reduced the band gap and increased the chemical bond length. These studies open up new opportunities for the future development of vdW material photoelectric resonators represented by AgInP2S6, and have important reference value.
引用
收藏
页数:7
相关论文
共 41 条
  • [11] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [12] Pressure-induced phase transition in ferrielectric CuInP2S6
    Grzechnik, A
    Cajipe, VB
    Payen, C
    McMillan, PF
    [J]. SOLID STATE COMMUNICATIONS, 1998, 108 (01) : 43 - 47
  • [13] Hou C., 2023, Nano Research Energy, V2, DOI [10.26599/NRE.2023.9120051, DOI 10.26599/NRE.2023.9120051]
  • [14] Borophene gas sensor
    Hou, Chuang
    Tai, Guoan
    Liu, Yi
    Liu, Xiang
    [J]. NANO RESEARCH, 2022, 15 (03) : 2537 - 2544
  • [15] Borophene-graphene heterostructure: Preparation and ultrasensitive humidity sensing
    Hou, Chuang
    Tai, Guo'an
    Liu, Bo
    Wu, Zenghui
    Yin, Yonghe
    [J]. NANO RESEARCH, 2021, 14 (07) : 2337 - 2344
  • [16] Heyd-Scuseria-Ernzerhof hybrid functional for calculating the lattice dynamics of semiconductors
    Hummer, Kerstin
    Harl, Judith
    Kresse, Georg
    [J]. PHYSICAL REVIEW B, 2009, 80 (11)
  • [17] Two-dimensional antimonene single crystals grown by van der Waals epitaxy
    Ji, Jianping
    Song, Xiufeng
    Liu, Jizi
    Yan, Zhong
    Huo, Chengxue
    Zhang, Shengli
    Su, Meng
    Liao, Lei
    Wang, Wenhui
    Ni, Zhenhua
    Hao, Yufeng
    Zeng, Haibo
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [18] Jiang T, 2014, NAT NANOTECHNOL, V9, P825, DOI [10.1038/NNANO.2014.176, 10.1038/nnano.2014.176]
  • [19] Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. PHYSICAL REVIEW B, 1996, 54 (16): : 11169 - 11186
  • [20] From ultrasoft pseudopotentials to the projector augmented-wave method
    Kresse, G
    Joubert, D
    [J]. PHYSICAL REVIEW B, 1999, 59 (03): : 1758 - 1775