Strain-induced electronic structures and band-gap of few-layer AgInP2S6

被引:0
作者
Zhen, Jiapeng [1 ,2 ]
Huang, Qiushi [3 ]
Liu, Ying [1 ,2 ]
Luo, Xinyu [1 ,2 ]
Zheng, Xiande [1 ,2 ]
Guo, Silin [1 ,2 ]
Qiu, Jing [1 ,2 ]
Liu, Guanjun [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 400713, Hunan, Peoples R China
[2] Natl Univ Def Technol, Sci & Technol Integrated Logist Support Lab, Changsha 400713, Hunan, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100093, Peoples R China
基金
中国国家自然科学基金;
关键词
strains; band-gap; electronic structure; few-layer; MONOLAYER; TRANSITION; STACKING;
D O I
10.1088/1361-6528/acf6c5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The band gap and mechanical control ability of two-dimensional materials largely determine the application value of two-dimensional devices in optical and electronic properties, so the bandgap controllability of two-dimensional materials broadens the application range of multi-functional devices. In the layered van der Waals (vdW) material AgInP2S6, the band gap can be adjusted by the number of layers and flexible strain, and the few layers AgInP2S6 have discrete band gap values, which are also relevant for optoelectronic applications. In the strain range of up to 2.7% applied, the band gap can be adjusted, and the film is relatively stable under strain. We further analyzed the physical mechanism of flexible strain band gap regulation and found that strain-regulation reduced the band gap and increased the chemical bond length. These studies open up new opportunities for the future development of vdW material photoelectric resonators represented by AgInP2S6, and have important reference value.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Flexible Large-Area Light-Emitting Devices Based on WS2Monolayers [J].
Andrzejewski, Dominik ;
Oliver, Ruth ;
Beckmann, Yannick ;
Grundmann, Annika ;
Heuken, Michael ;
Kalisch, Holger ;
Vescan, Andrei ;
Kuemmell, Tilmar ;
Bacher, Gerd .
ADVANCED OPTICAL MATERIALS, 2020, 8 (20)
[2]   CuInP2S6 Room Temperature Layered Ferroelectric [J].
Belianinov, A. ;
He, Q. ;
Dziaugys, A. ;
Maksymovych, P. ;
Eliseev, E. ;
Borisevich, A. ;
Morozovska, A. ;
Banys, J. ;
Vysochanskii, Y. ;
Kalinin, S. V. .
NANO LETTERS, 2015, 15 (06) :3808-3814
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[5]   Large-Scale Domain Engineering in Two-Dimensional FerroelectricCuInP2S6 via Giant Flexoelectric Effect [J].
Chen, Chen ;
Liu, Heng ;
Lai, Qinglin ;
Mao, Xiaoyu ;
Fu, Jun ;
Fu, Zhaoming ;
Zeng, Hualing .
NANO LETTERS, 2022, 22 (08) :3275-3282
[6]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[7]   P2S5 Reactive Flux Method for the Rapid Synthesis of Mono- and Bimetallic 2D Thiophosphates M2-xM′xP2S6 [J].
Chica, Daniel G. ;
Iyer, Abishek K. ;
Cheng, Matthew ;
Ryan, Kevin M. ;
Krantz, Patrick ;
Laing, Craig ;
dos Reis, Roberto ;
Chandrasekhar, Venkat ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
INORGANIC CHEMISTRY, 2021, 60 (06) :3502-3513
[8]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[9]   Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides [J].
Du, Ke-zhao ;
Wang, Xing-zhi ;
Liu, Yang ;
Hu, Peng ;
Utama, M. Iqbal Bakti ;
Gan, Chee Kwan ;
Xiong, Qihua ;
Kloc, Christian .
ACS NANO, 2016, 10 (02) :1738-1743
[10]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425