Adaboosting graph attention recurrent network: A deep learning framework for traffic speed forecasting in dynamic transportation networks with spatial-temporal dependencies

被引:3
作者
Zhang, Yunuo [1 ]
Wang, Xiaoling [1 ]
Yu, Jia [1 ]
Zeng, Tuocheng [1 ]
Wang, Jiajun [1 ]
机构
[1] Tianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic prediction; Graph attention mechanism; Adaptive boosting; Construction transportation; REAL-TIME; PREDICTION; CONSTRUCTION;
D O I
10.1016/j.engappai.2023.107297
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In construction engineering, transportation is a key factor affecting the construction schedule, and Transportation Speed Prediction (TSP) provides essential information for the precise scheduling of construction transportation. TSP is a challenging task due to the complex spatial-temporal traffic correlations and the dynamic variation of transportation routes. Given the superiority in topology representation of traffic networks, graphbased networks are becoming the prevalent traffic prediction solutions. However, existing methods have difficulty in dealing with dynamic transportation network structures and insufficiency in extracting representative spatial-temporal features. To address such issues, in this article, an Adaboosting Graph Attention Recurrent Network (Ada-GARN) is proposed. In the network, a graph attention recurrent unit is developed that integrates graph attention convolution with gated recurrent structures to extract spatial-temporal features of the transportation network with changing structures. On this basis, considering the effect of the time lag in traffic propagation, the attention space of graph convolution is extended to the past state of neighboring nodes based on traffic feature graphs, which enhances the representation of spatial evolution characteristics. Furthermore, to effectively integrate the multi-scale spatial-temporal information, the model uses an Adaboost framework to ensemble graph attention recurrent units instead of directly stacking spatial-temporal layers, which measures the feature differences among layer-wise neighbors and adaptively adjusts node weights in training. Experiments conducted on a large infrastructure project transportation dataset and a highway dataset show the model's adaptability to different scenarios. The proposed model outperforms state-of-the-art methods and reduces 11.2%-28% and 23%-23.1% in terms of RMSE and MAE metrics, respectively.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Variational spatial-temporal graph attention network for state monitoring and forecasting
    Fang, Yanchao
    Xu, Minrui
    Wang, Ye
    Yu, Yang
    Kang, Dayong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264
  • [22] Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting
    Guo, Shengnan
    Lin, Youfang
    Wan, Huaiyu
    Li, Xiucheng
    Cong, Gao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5415 - 5428
  • [23] Modeling Global Spatial-Temporal Graph Attention Network for Traffic Prediction
    Sun, Bin
    Zhao, Duan
    Shi, Xinguo
    He, Yongxin
    IEEE ACCESS, 2021, 9 : 8581 - 8594
  • [24] STGAFormer: Spatial-temporal Gated Attention Transformer based Graph Neural Network for traffic flow forecasting
    Geng, Zili
    Xu, Jie
    Wu, Rongsen
    Zhao, Changming
    Wang, Jin
    Li, Yunji
    Zhang, Chenlin
    INFORMATION FUSION, 2024, 105
  • [25] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [26] DSTGCN: Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Hu, Jia
    Lin, Xianghong
    Wang, Chu
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13116 - 13124
  • [27] Attention-based spatial-temporal adaptive dual-graph convolutional network for traffic flow forecasting
    Xia, Dawen
    Shen, Bingqi
    Geng, Jian
    Hu, Yang
    Li, Yantao
    Li, Huaqing
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23) : 17217 - 17231
  • [28] Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Sun, Yanfeng
    Jiang, Xiangheng
    Hu, Yongli
    Duan, Fuqing
    Guo, Kan
    Wang, Boyue
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23680 - 23693
  • [29] Unified Spatial-Temporal Neighbor Attention Network for Dynamic Traffic Prediction
    Long, Wangchen
    Xiao, Zhu
    Wang, Dong
    Jiang, Hongbo
    Chen, Jie
    Li, You
    Alazab, Mamoun
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (02) : 1515 - 1529
  • [30] Multi-stage attention spatial-temporal graph networks for traffic prediction
    Yin, Xueyan
    Wu, Genze
    Wei, Jinze
    Shen, Yanming
    Qi, Heng
    Yin, Baocai
    NEUROCOMPUTING, 2021, 428 : 42 - 53