Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using Amyloid PET and Brain MR Imaging Data: A 48-Month Follow-Up Analysis of the Alzheimer's Disease Neuroimaging Initiative Cohort

被引:4
作者
Kim, Do-Hoon [1 ,2 ]
Oh, Minyoung [1 ]
Kim, Jae Seung [1 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Nucl Med, Seoul 05505, South Korea
[2] Eulji Univ, Sch Med, Daejeon Eulji Med Ctr, Dept Nucl Med, Daejeon 35233, South Korea
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
positron emission tomography; magnetic resonance imaging; Alzheimer's disease; shape feature; Alzheimer's disease neuroimaging initiative cohort; HYPOTHETICAL MODEL; QUANTIFICATION; BIOMARKERS; AUTOPSY; DECLINE;
D O I
10.3390/diagnostics13213375
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We developed a novel quantification method named "shape feature" by combining the features of amyloid positron emission tomography (PET) and brain magnetic resonance imaging (MRI) and evaluated its significance in predicting the conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. From the ADNI database, 334 patients with MCI were included. The brain amyloid smoothing score (AV45_BASS) and brain atrophy index (MR_BAI) were calculated using the surface area and volume of the region of interest in AV45 PET and MRI. During the 48-month follow-up period, 108 (32.3%) patients converted from MCI to AD. Age, Mini-Mental State Examination (MMSE), cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog), apolipoprotein E (APOE), standardized uptake value ratio (SUVR), AV45_BASS, MR_BAI, and shape feature were significantly different between converters and non-converters. Univariate analysis showed that age, MMSE, ADAS-cog, APOE, SUVR, AV45_BASS, MR_BAI, and shape feature were correlated with the conversion to AD. In multivariate analyses, high shape feature, SUVR, and ADAS-cog values were associated with an increased risk of conversion to AD. In patients with MCI in the ADNI cohort, our quantification method was the strongest prognostic factor for predicting their conversion to AD.
引用
收藏
页数:13
相关论文
共 30 条
  • [21] Hippocampal volume change measurement: Quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST
    Mulder, Emma R.
    de Jong, Remko A.
    Knol, Dirk L.
    van Schijndel, Ronald A.
    Cover, Keith S.
    Visser, Pieter J.
    Barkhof, Frederik
    Vrenken, Hugo
    [J]. NEUROIMAGE, 2014, 92 : 169 - 181
  • [22] Brain Amyloid Imaging
    Rowe, Christopher C.
    Villemagne, Victor L.
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2011, 52 (11) : 1733 - 1740
  • [23] Partial-Volume Effect Correction Improves Quantitative Analysis of 18F-Florbetaben β-Amyloid PET Scans
    Rullmann, Michael
    Dukart, Juergen
    Hoffmann, Karl-Titus
    Luthardt, Julia
    Tiepolt, Solveig
    Patt, Marianne
    Gertz, Hermann-Josef
    Schroeter, Matthias L.
    Seiby, John
    Schulz-Schaeffer, Walter J.
    Sabri, Osama
    Barthel, Henryk
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2016, 57 (02) : 198 - 203
  • [24] Comparison of Visual and Quantitative Florbetapir F 18 Positron Emission Tomography Analysis in Predicting Mild Cognitive Impairment Outcomes
    Schreiber, Stefanie
    Landau, Susan M.
    Fero, Allison
    Schreiber, Frank
    Jagust, William J.
    [J]. JAMA NEUROLOGY, 2015, 72 (10) : 1183 - 1190
  • [25] Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
    Sperling, Reisa A.
    Aisen, Paul S.
    Beckett, Laurel A.
    Bennett, David A.
    Craft, Suzanne
    Fagan, Anne M.
    Iwatsubo, Takeshi
    Jack, Clifford R., Jr.
    Kaye, Jeffrey
    Montine, Thomas J.
    Park, Denise C.
    Reiman, Eric M.
    Rowe, Christopher C.
    Siemers, Eric
    Stern, Yaakov
    Yaffe, Kristine
    Carrillo, Maria C.
    Thies, Bill
    Morrison-Bogorad, Marcelle
    Wagster, Molly V.
    Phelps, Creighton H.
    [J]. ALZHEIMERS & DEMENTIA, 2011, 7 (03) : 280 - 292
  • [26] Tabatabaei-Jafari Hossein, 2015, Alzheimers Dement (Amst), V1, P487, DOI 10.1016/j.dadm.2015.11.002
  • [27] Automated Quantification of 18F-Flutemetamol PET Activity for Categorizing Scans as Negative or Positive for Brain Amyloid: Concordance with Visual Image Reads
    Thurfjell, Lennart
    Lilja, Johan
    Lundqvist, Roger
    Buckley, Chris
    Smith, Adrian
    Vandenberghe, Rik
    Sherwin, Paul
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (10) : 1623 - 1628
  • [28] Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage
    Vemuri, Prashanthi
    Whitwell, Jennifer L.
    Kantarci, Kejal
    Josephs, Keith A.
    Parisi, Joseph E.
    Shiung, Maria S.
    Knopman, David S.
    Boeve, Bradley F.
    Petersen, Ronald C.
    Dickson, Dennis W.
    Jack, Clifford R., Jr.
    [J]. NEUROIMAGE, 2008, 42 (02) : 559 - 567
  • [29] MRI correlates of neurofibrillary tangle pathology at autopsy - A voxel-based morphometry study
    Whitwell, J. L.
    Josephs, K. A.
    Murray, M. E.
    Kantarci, K.
    Przybelski, S. A.
    Weigand, S. D.
    Vemuri, P.
    Senjem, M. L.
    Parisi, J. E.
    Knopman, D. S.
    Boeve, B. F.
    Petersen, R. C.
    Dickson, D. W.
    Jack, C. R., Jr.
    [J]. NEUROLOGY, 2008, 71 (10) : 743 - 749
  • [30] Alzheimer's Disease Neurodegenerative Biomarkers Are Associated with Decreased Cognitive Function but Not β-Amyloid in Cognitively Normal Older Individuals
    Wirth, Miranka
    Madison, Cindee M.
    Rabinovici, Gil D.
    Oh, Hwamee
    Landau, Susan M.
    Jagust, William J.
    [J]. JOURNAL OF NEUROSCIENCE, 2013, 33 (13) : 5553 - 5563