Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using Amyloid PET and Brain MR Imaging Data: A 48-Month Follow-Up Analysis of the Alzheimer's Disease Neuroimaging Initiative Cohort

被引:4
作者
Kim, Do-Hoon [1 ,2 ]
Oh, Minyoung [1 ]
Kim, Jae Seung [1 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Nucl Med, Seoul 05505, South Korea
[2] Eulji Univ, Sch Med, Daejeon Eulji Med Ctr, Dept Nucl Med, Daejeon 35233, South Korea
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
positron emission tomography; magnetic resonance imaging; Alzheimer's disease; shape feature; Alzheimer's disease neuroimaging initiative cohort; HYPOTHETICAL MODEL; QUANTIFICATION; BIOMARKERS; AUTOPSY; DECLINE;
D O I
10.3390/diagnostics13213375
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We developed a novel quantification method named "shape feature" by combining the features of amyloid positron emission tomography (PET) and brain magnetic resonance imaging (MRI) and evaluated its significance in predicting the conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. From the ADNI database, 334 patients with MCI were included. The brain amyloid smoothing score (AV45_BASS) and brain atrophy index (MR_BAI) were calculated using the surface area and volume of the region of interest in AV45 PET and MRI. During the 48-month follow-up period, 108 (32.3%) patients converted from MCI to AD. Age, Mini-Mental State Examination (MMSE), cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog), apolipoprotein E (APOE), standardized uptake value ratio (SUVR), AV45_BASS, MR_BAI, and shape feature were significantly different between converters and non-converters. Univariate analysis showed that age, MMSE, ADAS-cog, APOE, SUVR, AV45_BASS, MR_BAI, and shape feature were correlated with the conversion to AD. In multivariate analyses, high shape feature, SUVR, and ADAS-cog values were associated with an increased risk of conversion to AD. In patients with MCI in the ADNI cohort, our quantification method was the strongest prognostic factor for predicting their conversion to AD.
引用
收藏
页数:13
相关论文
共 30 条
  • [1] Unified segmentation
    Ashburner, J
    Friston, KJ
    [J]. NEUROIMAGE, 2005, 26 (03) : 839 - 851
  • [2] Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study
    Barthel, Henryk
    Gertz, Hermann-Josef
    Dresel, Stefan
    Peters, Oliver
    Bartenstein, Peter
    Buerger, Katharina
    Hiemeyer, Florian
    Wittemer-Rump, Sabine M.
    Seibyl, John
    Reininger, Cornelia
    Sabri, Osama
    [J]. LANCET NEUROLOGY, 2011, 10 (05) : 424 - 435
  • [3] Diagnostic and prognostic value of amyloid PET textural and shape features: comparison with classical semi-quantitative rating in 760 patients from the ADNI-2 database
    Ben Bouallegue, Faycal
    Vauchot, Fabien
    Mariano-Goulart, Denis
    Payoux, Pierre
    [J]. BRAIN IMAGING AND BEHAVIOR, 2019, 13 (01) : 111 - 125
  • [4] Comparison of CSF markers and semi-quantitative amyloid PET in Alzheimer's disease diagnosis and in cognitive impairment prognosis using the ADNI-2 database
    Ben Bouallegue, Faycal
    Mariano-Goulart, Denis
    Payoux, Pierre
    [J]. ALZHEIMERS RESEARCH & THERAPY, 2017, 9
  • [5] Assessment of the Incremental Diagnostic Value of Florbetapir F 18 Imaging in Patients With Cognitive Impairment The Incremental Diagnostic Value of Amyloid PET With [18F]-Florbetapir (INDIA-FBP) Study
    Boccardi, Marina
    Altomare, Daniele
    Ferrari, Clarissa
    Festari, Cristina
    Guerra, Ugo Paolo
    Paghera, Barbara
    Pizzocaro, Claudio
    Lussignoli, Giulia
    Geroldi, Cristina
    Zanetti, Orazio
    Cotelli, Maria Sofia
    Turla, Marinella
    Borroni, Barbara
    Rozzini, Luca
    Mirabile, Dario
    Defanti, Carlo
    Gennuso, Michele
    Prelle, Alessandro
    Gentile, Simona
    Morandi, Alessandro
    Vollaro, Stefano
    Dalla Volta, Giorgio
    Bianchetti, Angelo
    Conti, Marta Zaffira
    Cappuccio, Melania
    Carbone, Pasqualina
    Bellandi, Daniele
    Abruzzi, Luciano
    Bettoni, Luigi
    Villani, Daniele
    Raimondi, Maria Clara
    Lanari, Alessia
    Ciccone, Alfonso
    Facchi, Emanuela
    Di Fazio, Ignazio
    Rozzini, Renzo
    Boffelli, Stefano
    Manzoni, Laura
    Salvi, Giovanni Pietro
    Cavaliere, Sabina
    Belotti, Gloria
    Avanzi, Stefano
    Pasqualetti, Patrizio
    Muscio, Cristina
    Padovani, Alessandro
    Frisoni, Giovanni B.
    [J]. JAMA NEUROLOGY, 2016, 73 (12) : 1417 - 1424
  • [6] Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging
    Choi, Hongyoon
    Jin, Kyong Hwan
    [J]. BEHAVIOURAL BRAIN RESEARCH, 2018, 344 : 103 - 109
  • [7] Clark CM, 2012, LANCET NEUROL, V11, P669, DOI 10.1016/S1474-4422(12)70142-4
  • [8] Use of Florbetapir-PET for Imaging β-Amyloid Pathology
    Clark, Christopher M.
    Schneider, Julie A.
    Bedell, Barry J.
    Beach, Thomas G.
    Bilker, Warren B.
    Mintun, Mark A.
    Pontecorvo, Michael J.
    Hefti, Franz
    Carpenter, Alan P.
    Flitter, Matthew L.
    Krautkramer, Michael J.
    Kung, Hank F.
    Coleman, R. Edward
    Doraiswamy, P. Murali
    Fleisher, Adam S.
    Sabbagh, Marwan N.
    Sadowsky, Carl H.
    Reiman, P. Eric M.
    Zehntner, Simone P.
    Skovronsky, Daniel M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2011, 305 (03): : 275 - 283
  • [9] Florbetapir F 18 amyloid PET and 36-month cognitive decline: a prospective multicenter study
    Doraiswamy, P. M.
    Sperling, R. A.
    Johnson, K.
    Reiman, E. M.
    Wong, T. Z.
    Sabbagh, M. N.
    Sadowsky, C. H.
    Fleisher, A. S.
    Carpenter, A.
    Joshi, A. D.
    Lu, M.
    Grundman, M.
    Mintun, M. A.
    Skovronsky, D. M.
    Pontecorvo, M. J.
    [J]. MOLECULAR PSYCHIATRY, 2014, 19 (09) : 1044 - 1051
  • [10] The A/T/N biomarker scheme and patterns of brain atrophy assessed in mild cognitive impairment
    Ekman, Urban
    Ferreira, Daniel
    Westman, Eric
    [J]. SCIENTIFIC REPORTS, 2018, 8