Waste biorefinery to produce renewable energy: Bioconversion process and circular bioeconomy

被引:20
作者
Ahmed, Shams Forruque [1 ]
Kabir, Maliha [1 ]
Mehjabin, Aanushka [1 ]
Oishi, Fatema Tuz Zuhara [1 ]
Ahmed, Samiya [2 ]
Mannan, Samiha [3 ]
Mofijur, M. [4 ,5 ]
Almomani, Fares [6 ]
Badruddin, Irfan Anjum [7 ]
Kamangar, Sarfaraz [7 ]
机构
[1] Asian Univ Women, Sci & Math Program, Chittagong 4000, Bangladesh
[2] Hamad Bin Khalifa Univ, Coll Hlth & Life Sci, Biol & Biomed Sci Dept, Doha, Qatar
[3] Univ Oxford, Sch Geog & Environm, Oxford OX1 2JD, England
[4] Univ Technol Sydney, Ctr Technol Water & Wastewater, Sch Civil & Environm Engn, Ultimo, NSW 2007, Australia
[5] Prince Mohammad Bin Fahd Univ, Mech Engn Dept, Al Khobar 31952, Saudi Arabia
[6] Qatar Univ, Dept Chem Engn, Coll Engn, Doha, Qatar
[7] King Khalid Univ, Coll Engn, Mech Engn Dept, Abha 61421, Saudi Arabia
关键词
Bioconversion; Food waste; Bioproduct; Bioenergy; Biorefinery; Circular bioeconomy; LIFE-CYCLE ASSESSMENT; ACETONE-BUTANOL-ETHANOL; MUNICIPAL SOLID-WASTE; FOOD WASTE; BIOBUTANOL PRODUCTION; BIODIESEL PRODUCTION; ANAEROBIC-DIGESTION; ENVIRONMENTAL ASSESSMENT; FATTY-ACIDS; TO-ENERGY;
D O I
10.1016/j.egyr.2023.09.137
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Continual global energy scarcity and its future challenges, as well as environmental disasters, are causing global devastation. Additionally, a substantial quantity of food is being wasted regularly. Therefore, the adoption of circular bioeconomy principles and the bioconversion of wasted food appears to be both highly advantageous and urgently required. However, previous studies have placed limited emphasis on the technological progress and circular bioeconomy aspects associated with the bioconversion of wasted food. The present review thus investigates how mass-generated food waste can be used to produce valuable bioproducts through bioconversion techniques such as oleaginous metabolism, anaerobic fermentation, and solventogenesis. These techniques have attracted considerable interest due to their eco-friendly and resource-recycling capacities, as well as their efficiency and sustainability. The paper also discusses approaches to integrate biorefineries within existing economies to establish a circular bioeconomy and analyses the challenges as well as the techno-economic, environmental and life cycle scenarios of these approaches. Analysis of the techno-economic and environmental effects reveals that food waste biorefineries can be lucrative if certain pathways are maintained. The environmental impact of bioconversion methods that produce valuable bioproducts is also found to be substantially lower than that of conventional methods. Integrating bioconversion processes further improves the efficiency of the process and sustainably recovers resources. Developing a circular bioeconomy requires the adoption of a biorefinery strategy with an integrated approach.
引用
收藏
页码:3073 / 3091
页数:19
相关论文
共 193 条
[1]   Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis [J].
Abd-Alla, Mohamed Hemida ;
El-Enany, Abdel-Wahab Elsadek .
BIOMASS & BIOENERGY, 2012, 42 :172-178
[2]  
Abdel-Shafy HI., 2018, Egypt. J. Pet, V27, P1275, DOI [10.1016/j.ejpe.2018.07.003, DOI 10.1016/J.EJPE.2018.07.003]
[3]  
Abedin M.A., 2015, ASIAN J MED BIOL RES, V1, P114, DOI DOI 10.3329/AJMBR.V1I1.25507
[4]   Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production [J].
Abou-Shanab, Reda A. I. ;
Hwang, Jae-Hoon ;
Cho, Yunchul ;
Min, Booki ;
Jeon, Byong-Hun .
APPLIED ENERGY, 2011, 88 (10) :3300-3306
[5]   Sustainable hydrogen production: Technological advancements and economic analysis [J].
Ahmed, Shams Forruque ;
Mofijur, M. ;
Nuzhat, Samiha ;
Rafa, Nazifa ;
Musharrat, Afla ;
Lam, Su Shiung ;
Boretti, Alberto .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (88) :37227-37255
[6]   Biohydrogen production from wastewater-based microalgae: Progresses and challenges [J].
Ahmed, Shams Forruque ;
Mofijur, M. ;
Nahrin, Muntasha ;
Chowdhury, Sidratun Nur ;
Nuzhat, Samiha ;
Alherek, May ;
Rafa, Nazifa ;
Ong, Hwai Chyuan ;
Nghiem, L. D. ;
Mahlia, T. M. I. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (88) :37321-37342
[7]   Biohydrogen Production From Biomass Sources: Metabolic Pathways and Economic Analysis [J].
Ahmed, Shams Forruque ;
Rafa, Nazifa ;
Mofijur, M. ;
Badruddin, Irfan Anjum ;
Inayat, Abrar ;
Ali, Md Sawkat ;
Farrok, Omar ;
Khan, T. M. Yunus .
FRONTIERS IN ENERGY RESEARCH, 2021, 9 (09)
[8]   Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4 [J].
Al-Shorgani, Najeeb Kaid Nasser ;
Kalil, Mohd Sahaid ;
Yusoff, Wan Mohtar Wan .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2012, 35 (05) :817-826
[9]   Potential use of algae for the bioremediation of different types of wastewater and contaminants: Production of bioproducts and biofuel for green circular economy [J].
Alazaiza, Motasem Y. D. ;
Albahnasawi, Ahmed ;
Ahmad, Zulfiqar ;
Bashir, Mohammed J. K. ;
Al-Wahaibi, Talal ;
Abujazar, Mohammed Shadi S. ;
Abu Amr, Salem S. ;
Nassani, Dia Eddin .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 324
[10]   Recent advances in the life cycle assessment of biodiesel production linked to azo dye degradation using yeast symbionts of termite guts: A critical review [J].
Ali, Sameh S. ;
Al-Tohamy, Rania ;
Mahmoud, Yehia A. -G. ;
Kornaros, Michael ;
Sun, Sarina ;
Sun, Jianzhong .
ENERGY REPORTS, 2022, 8 :7557-7581