REMARKS ON THE LOCAL STRUCTURE OF REGULAR FRACTAL FUNCTIONS WITH FRACTAL DIMENSIONS

被引:0
|
作者
Zhang, Q. [1 ]
Lu, L. J. [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China
[2] Nanjing Univ, Business Sch, Nanjing 210008, Peoples R China
[3] Wuxi TaiHu Univ, Wuxi 214063, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractal Dimensions; Regular Fractal Functions; Variation; Fractal Characteristic; Local Structure;
D O I
10.1142/S0218348X23501189
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we have explored the local structure and fractal characteristics of fractal functions with certain fractal dimensions. The conclusion that points with inconsistent oscillation amplitudes with the upper Box dimension of the corresponding fractal functions have been proved to be nowhere dense. This will play an important supporting role in exploring the fractal dimension estimation of the combination of fractal functions.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Singular Functions with Applications to Fractal Dimensions and Generalized Takagi Functions
    E. de Amo
    M. Díaz Carrillo
    J. Fernández-Sánchez
    Acta Applicandae Mathematicae, 2012, 119 : 129 - 148
  • [32] Singular Functions with Applications to Fractal Dimensions and Generalized Takagi Functions
    de Amo, E.
    Diaz Carrillo, M.
    Fernandez-Sanchez, J.
    ACTA APPLICANDAE MATHEMATICAE, 2012, 119 (01) : 129 - 148
  • [33] Some Remarks on the Fractal Structure of Irrigation Balls
    Devillanova, Giuseppe
    Solimini, Sergio
    ADVANCED NONLINEAR STUDIES, 2019, 19 (01) : 55 - 68
  • [34] PHASE-SEPARATION ON REGULAR AND FRACTAL LATTICES IN 2 DIMENSIONS
    ALCARAZ, FC
    DEFELICIO, JRD
    KOBERLE, R
    PHYSICS LETTERS A, 1986, 118 (04) : 200 - 202
  • [35] Anderson transition driven by running fractal dimensions in a fractal-shaped structure
    Ugajin, R
    Hirata, S
    Kuroki, Y
    PHYSICA A, 2000, 278 (3-4): : 312 - 326
  • [36] Estimation of the Fractal Dimensions of the Linear Combination of Continuous Functions
    Yu, Binyan
    Liang, Yongshun
    MATHEMATICS, 2022, 10 (13)
  • [37] Copulae, Self-Affine Functions, and Fractal Dimensions
    Enrique de Amo
    Manuel Díaz Carrillo
    Juan Fernández Sánchez
    Mediterranean Journal of Mathematics, 2014, 11 : 1275 - 1287
  • [38] Distribution of digits in integers: fractal dimensions and zeta functions
    Olsen, L
    ACTA ARITHMETICA, 2002, 105 (03) : 253 - 277
  • [39] A note on fractal dimensions of graphs of certain continuous functions
    Liu, Peizhi
    Yu, Binyan
    Liang, Yongshun
    CHAOS SOLITONS & FRACTALS, 2024, 188
  • [40] Copulae, Self-Affine Functions, and Fractal Dimensions
    de Amo, Enrique
    Diaz Carrillo, Manuel
    Fernandez Sanchez, Juan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (04) : 1275 - 1287