Metastability from the large deviations point of view: A Γ-expansion of the level two large deviations rate functional of non-reversible finite-state Markov chains

被引:0
作者
Landim, C. [1 ,2 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460 Rio De Janeiro, Brazil
[2] Univ Rouen, CNRS, UMR 6085, Ave Univ,BP12,Technopole Madrillet, F-76801 St Etienne Du Rouvray, France
关键词
Metastability; Large deviations; Continuous-time Markov processes on discrete state spaces; GLAUBER DYNAMICS; DIFFUSION-PROCESSES; KAWASAKI DYNAMICS; SHARP ASYMPTOTICS; DROPLETS; BEHAVIOR; MODEL; TIME;
D O I
10.1016/j.spa.2023.09.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a sequence of continuous-time Markov chains (X-t((n)) : t = 0) evolving on a fixed finite state space V. Let I-n be the level two large deviations rate functional for X-t((n)), t, as t -> infinity. Under a hypothesis on the jump rates, we prove that I-n can be written as I-n = I-(0) + Sigma(1 <= p <= q)(1/theta((p))(n))I-(p) for some rate functionals I-(p). The weights theta((p))(n) correspond to the time-scales at which the sequence of Markov chains X-t((n)) exhibit a metastable behavior, and the zero level sets of the rate functionals I-(p) identify the metastable states. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:275 / 315
页数:41
相关论文
共 44 条
[1]   Zero-range condensation at criticality [J].
Armendariz, Ines ;
Grosskinsky, Stefan ;
Loulakis, Michail .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (09) :3466-3496
[2]   Tunneling of the Kawasaki dynamics at low temperatures in two dimensions [J].
Beltran, J. ;
Landim, C. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (01) :59-88
[3]   Tunneling and Metastability of Continuous Time Markov Chains II, the Nonreversible Case [J].
Beltran, J. ;
Landim, C. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) :598-618
[4]   Metastability of reversible finite state Markov processes [J].
Beltran, J. ;
Landim, C. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (08) :1633-1677
[5]   Metastability of reversible condensed zero range processes on a finite set [J].
Beltran, J. ;
Landim, C. .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 152 (3-4) :781-807
[6]   Tunneling and Metastability of Continuous Time Markov Chains [J].
Beltran, J. ;
Landim, C. .
JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (06) :1065-1114
[7]  
Ben Arous G., 1996, Electron. J. Probab., V1
[8]  
Bertini L, 2022, Arxiv, DOI arXiv:2207.02588
[9]   Metastability in the reversible inclusion process [J].
Bianchi, Alessandra ;
Dommers, Sander ;
Giardina, Cristian .
ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
[10]   Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary [J].
Bovier, A ;
den Hollander, F ;
Nardi, FR .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 135 (02) :265-310