Development and validation of MonteRay, a fast Monte Carlo dose engine for carbon ion beam radiotherapy

被引:7
作者
Lysakovski, Peter [1 ,2 ]
Kopp, Benedikt [1 ]
Tessonnier, Thomas [1 ,3 ]
Mein, Stewart [1 ,3 ,4 ,5 ,6 ,7 ,8 ]
Ferrari, Alfredo [1 ]
Haberer, Thomas [1 ]
Debus, Juergen [1 ,4 ,7 ,9 ]
Mairani, Andrea [1 ,3 ,4 ,10 ]
机构
[1] Heidelberg Univ Hosp, Heidelberg Ion Beam Therapy Ctr HIT, Dept Radiat Oncol, Heidelberg, Germany
[2] Heidelberg Univ, Fac Phys & Astron, Heidelberg, Germany
[3] Heidelberg Univ Hosp UKHD, German Canc Consortium DKTK, Natl Ctr Tumor Dis NCT, Clin Cooperat Unit Translat Radiat Oncol,Core Ctr, Heidelberg, Germany
[4] German Canc Res Ctr, Heidelberg, Germany
[5] Heidelberg Univ Hosp UKHD, Heidelberg Fac Med MFHD, Div Mol & Translat Radiat Oncol, Heidelberg, Germany
[6] Heidelberg Univ Hosp UKHD, Dept Radiat Oncol, Heidelberg, Germany
[7] Heidelberg Univ Hosp UKHD, Heidelberg Fac Med MFHD, Heidelberg Inst Radiat Oncol HIRO, Natl Ctr Radiat Oncol NCRO, Heidelberg, Germany
[8] Univ Penn, Dept Radiat Oncol, Philadelphia, PA USA
[9] Heidelberg Univ Hosp UKHD, Clin Cooperat Unit Radiat Oncol, German Canc Consortium DKTK, Core Ctr Heidelberg,Natl Ctr Tumor Dis NCT,Dept Ra, Heidelberg, Germany
[10] Natl Ctr Oncol Hadrontherapy CNAO, Med Phys, Pavia, Italy
关键词
carbon ions; dose calculation; fast Monte Carlo; radiotherapy; SCANNED PROTON; FLUKA; SIMULATIONS; THERAPY; DISTRIBUTIONS; TRANSPORT; ENERGY; GEANT4; SYSTEM; MODEL;
D O I
10.1002/mp.16754
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundMonte Carlo (MC) simulations are considered the gold-standard for accuracy in radiotherapy dose calculation; so far however, no commercial treatment planning system (TPS) provides a fast MC for supporting clinical practice in carbon ion therapy.PurposeTo extend and validate the in-house developed fast MC dose engine MonteRay for carbon ion therapy, including physical and biological dose calculation.MethodsMonteRay is a CPU MC dose calculation engine written in C++ that is capable of simulating therapeutic proton, helium and carbon ion beams. In this work, development steps taken to include carbon ions in MonteRay are presented. Dose distributions computed with MonteRay are evaluated using a comprehensive validation dataset, including various measurements (pristine Bragg peaks, spread out Bragg peaks in water and behind an anthropomorphic phantom) and simulations of a patient plan. The latter includes both physical and biological dose comparisons. Runtimes of MonteRay were evaluated against those of FLUKA MC on a standard benchmark problem.ResultsDosimetric comparisons between MonteRay and measurements demonstrated good agreement. In terms of pristine Bragg peaks, mean errors between simulated and measured integral depth dose distributions were between -2.3% and +2.7%. Comparing SOBPs at 5, 12.5 and 20 cm depth, mean absolute relative dose differences were 0.9%, 0.7% and 1.6% respectively. Comparison against measurements behind an anthropomorphic head phantom revealed mean absolute dose differences of 1.2%& PLUSMN;1.1%$1.2\% \pm 1.1\;\% \;$with global 3%/3 mm 3D-& gamma; passing rates of 99.3%, comparable to those previously reached with FLUKA (98.9%). Comparisons against dose predictions computed with the clinical treatment planning tool RayStation 11B for a meningioma patient plan revealed excellent local 1%/1 mm 3D-& gamma; passing rates of 98% for physical and 94% for biological dose. In terms of runtime, MonteRay achieved speedups against reference FLUKA simulations ranging from 14x to 72x, depending on the beam's energy and the step size chosen.ConclusionsValidations against clinical dosimetric measurements in homogeneous and heterogeneous scenarios and clinical TPS calculations have proven the validity of the physical models implemented in MonteRay. To conclude, MonteRay is viable as a fast secondary MC engine for supporting clinical practice in proton, helium and carbon ion radiotherapy.
引用
收藏
页码:1433 / 1449
页数:17
相关论文
共 37 条
  • [1] GEANT4-a simulation toolkit
    Agostinelli, S
    Allison, J
    Amako, K
    Apostolakis, J
    Araujo, H
    Arce, P
    Asai, M
    Axen, D
    Banerjee, S
    Barrand, G
    Behner, F
    Bellagamba, L
    Boudreau, J
    Broglia, L
    Brunengo, A
    Burkhardt, H
    Chauvie, S
    Chuma, J
    Chytracek, R
    Cooperman, G
    Cosmo, G
    Degtyarenko, P
    Dell'Acqua, A
    Depaola, G
    Dietrich, D
    Enami, R
    Feliciello, A
    Ferguson, C
    Fesefeldt, H
    Folger, G
    Foppiano, F
    Forti, A
    Garelli, S
    Giani, S
    Giannitrapani, R
    Gibin, D
    Cadenas, JJG
    González, I
    Abril, GG
    Greeniaus, G
    Greiner, W
    Grichine, V
    Grossheim, A
    Guatelli, S
    Gumplinger, P
    Hamatsu, R
    Hashimoto, K
    Hasui, H
    Heikkinen, A
    Howard, A
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) : 250 - 303
  • [2] PENGEOM-A general-purpose geometry package for Monte Carlo simulation of radiation transport in material systems defined by quadric surfaces
    Almansa, Julio
    Salvat-Pujol, Francesc
    Diaz-Londono, Gloria
    Carnicer, Artur
    Lallena, Antonio M.
    Salvat, Francesc
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2016, 199 : 102 - 113
  • [3] Amanatides John, 1987, P EUR, DOI DOI 10.2312/EGTP.19871000
  • [4] Andersen H.R., 1997, INTRO BINARY DECISIO
  • [5] Measuring the Impact of Nuclear Interaction in Particle Therapy and in Radio Protection in Space: the FOOT Experiment
    Battistoni, Giuseppe
    Toppi, Marco
    Patera, Vincenzo
    [J]. FRONTIERS IN PHYSICS, 2021, 8
  • [6] Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy
    Bauer, J.
    Sommerer, F.
    Mairani, A.
    Unholtz, D.
    Farook, R.
    Handrack, J.
    Frey, K.
    Marcelos, T.
    Tessonnier, T.
    Ecker, S.
    Ackermann, B.
    Ellerbrock, M.
    Debus, J.
    Parodi, K.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (16) : 4635 - 4659
  • [7] The FLUKA Code: Developments and Challenges for High Energy and Medical Applications
    Boehlen, T. T.
    Cerutti, F.
    Chin, M. P. W.
    Fosso, A.
    Ferrari, A.
    Ortega, P. G.
    Mairani, A.
    Sala, P. R.
    Smirnov, G.
    Vlachoudisl, V.
    [J]. NUCLEAR DATA SHEETS, 2014, 120 : 211 - 214
  • [8] Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy
    Bohlen, T. T.
    Cerutti, F.
    Dosanjh, M.
    Ferrari, A.
    Gudowska, I.
    Mairani, A.
    Quesada, J. M.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (19) : 5833 - 5847
  • [9] A modified microdosimetric kinetic model for relative biological effectiveness calculation
    Chen, Yizheng
    Li, Junli
    Li, Chunyan
    Qiu, Rui
    Wu, Zhen
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (01)
  • [10] New algorithms for the Vavilov distribution calculation and the corresponding energy loss sampling
    Chibani, O
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1998, 45 (05) : 2288 - 2292