The Optimal Temporal Decay Rates for Compressible Hall-magnetohydrodynamics System

被引:0
|
作者
Fu, Shengbin [2 ]
Wang, Weiwei [1 ]
机构
[1] Fuzhou Univ, Sch Math & Stat, Fuzhou 350108, Peoples R China
[2] Fujian Univ, Key Lab Operat Res & Cybernet, Fuzhou 350108, Peoples R China
关键词
Compressible Hall-magnetohydrodynamics system; Optimal temporal decay rates; Fixed point theorem; Pure energy methods; RAYLEIGH-TAYLOR INSTABILITY; GLOBAL EXISTENCE; WELL-POSEDNESS; WEAK SOLUTIONS; BLOW-UP; SMOOTH SOLUTIONS; BESOV-SPACES; TIME-DECAY; EQUATIONS; CRITERIA;
D O I
10.1007/s00021-023-00820-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in the global well-posedness of the strong solutions to the Cauchy problem on the compressible magnetohydrodynamics system with Hall effect. Moreover, we establish the convergence rates of the above solutions trending towards the constant equilibrium (& rho; over bar ,0,B over bar )\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$({\bar{\rho }},0,\bar{\textbf{B}})$$\end{document}, provided that the initial perturbation belonging to H3(R3)& AND;B2,& INFIN;-s(R3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H<^>3({\mathbb {R}}<^>3) \cap B_{2, \infty }<^>{-s}({\mathbb {R}}<^>3)$$\end{document} for s & ISIN;(0,32]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$s \in (0,\frac{3}{2}]$$\end{document} is sufficiently small.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Optimal decay rates of classical solutions for the full compressible MHD equations
    Gao, Jincheng
    Tao, Qiang
    Yao, Zheng-an
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (02):
  • [42] On the Well-Posedness of the Hall-Magnetohydrodynamics with the Ion-Slip Effect
    Han, Woo Jin
    Hwang, Hyung Ju
    Moon, Byung Soo
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (04)
  • [43] Global Wellposedness and Large Time Behavior of Solutions to the Hall-Magnetohydrodynamics Equations
    Zhai, Xiaoping
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2020, 39 (04): : 395 - 419
  • [44] On strong solutions to the compressible Hall-magnetohydrodynamic system
    Fan, Jishan
    Alsaedi, Ahmed
    Hayat, Tasawar
    Nakamura, Gen
    Zhou, Yong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 423 - 434
  • [45] Optimal decay rates and the global attractors of the 2D fully dissipative magnetohydrodynamics system
    Hadadifard, Fazel
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [46] On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics with horizontal dissipation
    Fei, Minggang
    Xiang, Zhaoyin
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (05)
  • [47] Optimal decay rates and the global attractors of the 2D fully dissipative magnetohydrodynamics system
    Fazel Hadadifard
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [48] Global existence and optimal decay rate to the compressible FENE dumbbell model
    Luo, Zhaonan
    Luo, Wei
    Yin, Zhaoyang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 404 : 130 - 181
  • [49] Regularity criteria and small data global existence to the generalized viscous Hall-magnetohydrodynamics
    Ye, Zhuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (08) : 2137 - 2154
  • [50] OPTIMAL TIME-DECAY RATES OF THE COMPRESSIBLE NAVIER-STOKES-POISSON SYSTEM IN R3
    Wu, Guochun
    Wang, Han
    Zhang, Yinghui
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 3889 - 3908