The Optimal Temporal Decay Rates for Compressible Hall-magnetohydrodynamics System

被引:0
|
作者
Fu, Shengbin [2 ]
Wang, Weiwei [1 ]
机构
[1] Fuzhou Univ, Sch Math & Stat, Fuzhou 350108, Peoples R China
[2] Fujian Univ, Key Lab Operat Res & Cybernet, Fuzhou 350108, Peoples R China
关键词
Compressible Hall-magnetohydrodynamics system; Optimal temporal decay rates; Fixed point theorem; Pure energy methods; RAYLEIGH-TAYLOR INSTABILITY; GLOBAL EXISTENCE; WELL-POSEDNESS; WEAK SOLUTIONS; BLOW-UP; SMOOTH SOLUTIONS; BESOV-SPACES; TIME-DECAY; EQUATIONS; CRITERIA;
D O I
10.1007/s00021-023-00820-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in the global well-posedness of the strong solutions to the Cauchy problem on the compressible magnetohydrodynamics system with Hall effect. Moreover, we establish the convergence rates of the above solutions trending towards the constant equilibrium (& rho; over bar ,0,B over bar )\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$({\bar{\rho }},0,\bar{\textbf{B}})$$\end{document}, provided that the initial perturbation belonging to H3(R3)& AND;B2,& INFIN;-s(R3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$H<^>3({\mathbb {R}}<^>3) \cap B_{2, \infty }<^>{-s}({\mathbb {R}}<^>3)$$\end{document} for s & ISIN;(0,32]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$s \in (0,\frac{3}{2}]$$\end{document} is sufficiently small.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] A New Boundary Condition for the Hall-Magnetohydrodynamics Equation with the Ion-Slip Effect
    Han, Woo Jin
    Hwang, Hyung Ju
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (04)
  • [32] Decay Rates of the Compressible Hall-MHD Equations for Quantum Plasmas
    Xi, Xiaoyu
    Pu, Xueke
    Guo, Boling
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 459 - 481
  • [33] Decay rates of the compressible Hall-magnetohydrodynamic model for quantum plasmas
    Xi, Xiaoyu
    Pu, Xueke
    Guo, Boling
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (04)
  • [34] Interface behavior and decay rates of compressible Navier-Stokes system with density-dependent viscosity and a vacuum
    Guo, Zhenhua
    Zhang, Xueyao
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (01) : 247 - 274
  • [35] Optimal decay rates of the compressible magnetohydrodynamic equations
    Tan, Zhong
    Wang, Huaqiao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 188 - 201
  • [36] GLOBAL LARGE SMOOTH SOLUTIONS FOR 3-D HALL-MAGNETOHYDRODYNAMICS
    Zhang, Huali
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (11) : 6669 - 6682
  • [37] Boundedness and Time Decay of Solutions to a Full Compressible Hall-MHD System
    He, Fangyi
    Samet, Bessem
    Zhou, Yong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 2151 - 2162
  • [38] Optimal decay rates for the compressible viscoelastic flows
    Li, Yin
    Wei, Ruiying
    Yao, Zheng-an
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (11)
  • [39] Estimation of decay rates to large-solutions of 3D compressible magnetohydrodynamic system
    Wang, Shuai
    Chen, Fei
    Zhao, Yongye
    Wang, Chuanbao
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (11)
  • [40] Optimal decay rate for the compressible Navier-Stokes-Poisson system in the critical Lp framework
    Bie, Qunyi
    Wang, Qiru
    Yao, Zheng-an
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) : 8391 - 8417