Large-scale wave breaking over a barred beach: SPH numerical simulation and comparison with experiments

被引:19
作者
Altomare, Corrado [1 ]
Scandura, Pietro [2 ]
Caceres, Ivan [1 ]
van der A, Dominic A. [3 ]
Viccione, Giacomo [4 ]
机构
[1] Univ Politecn Cataluna, Lab Engn Maritima, Barcelona 08034, Spain
[2] Univ Catania, Dept Civil Engn & Architecture, Via St Sofia 64, I-95123 Catania, Italy
[3] Univ Aberdeen, Kings Coll, Sch Engn, Aberdeen AB24 3UE, Scotland
[4] Univ Salerno, Dept Civil Engn, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
关键词
Wave breaking; Barred beach; Smoothed particle hydrodynamics; DualSPHysics solver; Numerical validation; SMOOTHED PARTICLE HYDRODYNAMICS; WATER-WAVES; MODEL; COASTAL; DUALSPHYSICS; GENERATION; PROPAGATION; ABSORPTION; BOUNDARIES; CURRENTS;
D O I
10.1016/j.coastaleng.2023.104362
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Wave breaking plays a crucial role in several areas of interest in coastal engineering, such as flooding, wave loading on structures and coastal morphodynamics. In the present study, Smoothed Particle Hydrodynamics (SPH) simulations of monochromatic waves breaking over a rigid barred beach profile are presented. The numerical results comprise wave heights, phase average velocities, time-averaged velocities, vorticity dynamics, and radiation stress, and are validated versus detailed water surface and velocity measurements carried out in a large-scale laboratory wave flume. The experimental data include velocity profiles below the wave trough measured at 22 cross-shore locations in the bar region using acoustic and optical techniques and water surface elevation measured along the flume using resistive gauges, acoustic gauges and pressure sensors.This study is novel in that it analyses the hydrodynamics of wave breaking at a scale close to natural conditions, thus significantly reducing the scale effects of most previous studies, which were conducted at a much smaller scale.In general, water surface elevation is well reproduced by SPH, but discrepancies with the experiments are observed in the highly aerated breaking region, depending on the measurement technique. The SPH simulation shows that wave breaking generates a recirculating cell, immediately above the trough of the bar. Within this cell, near the bed, the flow is offshore directed, while in the upper part of the water column it is onshore oriented. This flow is probably one of the mechanisms that determine the growth of the bar when the bed is made of mobile material. The time-averaged velocity profiles are reproduced with reasonable accuracy by the numerical model, except at the edges of the bar trough, where discrepancies with respect to the measurements are observed. The numerical results provide detailed information, particularly interesting in areas lacking experimental data. One of the main surprising features revealed by the SPH simulations is the generation of a vortex pair that occurs when the cavities formed by the plunge jet collapse. These vortices can occasionally deform the free surface. Based on the numerical results, an analysis of the terms contributing to radiation stress shows that the product between the horizontal and the vertical velocity components does not make a significant contribution. Through comparisons with the SPH results, it is observed that the linear wave theory provides correct estimates of the radiation stress in the shoaling region sufficiently far from the bar crest, while in the surf zone it reproduces incorrect results. Information about the appropriate SPH model setup to correctly capture the physical processes involved in the breaking phenomenon are also presented.
引用
收藏
页数:20
相关论文
共 85 条
[1]   Improved relaxation zone method in SPH-based model for coastal engineering applications [J].
Altomare, C. ;
Tagliafierro, B. ;
Dominguez, J. M. ;
Suzuki, T. ;
Viccione, G. .
APPLIED OCEAN RESEARCH, 2018, 81 :15-33
[2]   Long-crested wave generation and absorption for SPH-based DualSPHysics model [J].
Altomare, C. ;
Dominguez, J. M. ;
Crespo, A. J. C. ;
Gonzalez-Cao, J. ;
Suzuki, T. ;
Gomez-Gesteira, M. ;
Troch, P. .
COASTAL ENGINEERING, 2017, 127 :37-54
[3]   Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics [J].
Altomare, C. ;
Crespo, A. J. C. ;
Rogers, B. D. ;
Dominguez, J. M. ;
Gironella, X. ;
Gomez-Gesteira, M. .
COMPUTERS & STRUCTURES, 2014, 130 :34-45
[4]   Simulation of random wave overtopping by a WCSPH model [J].
Altomare, Corrado ;
Gironella, Xavi ;
Crespo, Alejandro J. C. .
APPLIED OCEAN RESEARCH, 2021, 116
[5]   SPH Simulations of Real Sea Waves Impacting a Large-Scale Structure [J].
Altomare, Corrado ;
Tafuni, Angelantonio ;
Dominguez, Jose M. ;
Crespo, Alejandro J. C. ;
Gironella, Xavi ;
Sospedra, Joaquim .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (10) :1-21
[6]   Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures [J].
Altomare, Corrado ;
Crespo, Alejandro J. C. ;
Dominguez, Jose M. ;
Gomez-Gesteira, Moncho ;
Suzuki, Tomohiro ;
Verwaest, Toon .
COASTAL ENGINEERING, 2015, 96 :1-12
[7]   The lower shoreface: Morphodynamics and sediment connectivity with the upper shoreface and beach [J].
Anthony, Edward J. ;
Aagaard, Troels .
EARTH-SCIENCE REVIEWS, 2020, 210
[8]   Beach profile changes induced by surrogate Posidonia Oceanica: Laboratory experiments [J].
Astudillo, Carlos ;
Gracia, Vicente ;
Caceres, Ivan ;
Sierra, Joan Pau ;
Sanchez-Arcilla, Agustin .
COASTAL ENGINEERING, 2022, 175
[9]   Integration of UAV Photogrammetry and SPH Modelling of Fluids to Study Runoff on Real Terrains [J].
Barreiro, Anxo ;
Dominguez, Jose M. ;
Crespo, Alejandro J. C. ;
Gonzalez-Jorge, Higinio ;
Roca, David ;
Gomez-Gesteira, Moncho .
PLOS ONE, 2014, 9 (11)
[10]  
Battjes J., 1974, Coastal Engineering Proceedings, V1, P26, DOI [DOI 10.1061/9780872621138.029, 10.1061/9780872621138.029]