An Experimental Study of the Accuracy and Change Detection Potential of Blending Time Series Remote Sensing Images with Spatiotemporal Fusion
被引:3
|
作者:
Wei, Jingbo
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Peoples R China
Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Peoples R ChinaNanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Peoples R China
Wei, Jingbo
[1
,2
]
Chen, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Peoples R ChinaNanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Peoples R China
Chen, Lei
[1
]
Chen, Zhou
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Peoples R ChinaNanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Peoples R China
Chen, Zhou
[2
]
Huang, Yukun
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Univ Finance & Econ, Sch Informat Management, Nanchang 330013, Peoples R ChinaNanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Peoples R China
Huang, Yukun
[3
]
机构:
[1] Nanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Peoples R China
[3] Jiangxi Univ Finance & Econ, Sch Informat Management, Nanchang 330013, Peoples R China
Over one hundred spatiotemporal fusion algorithms have been proposed, but convolutional neural networks trained with large amounts of data for spatiotemporal fusion have not shown significant advantages. In addition, no attention has been paid to whether fused images can be used for change detection. These two issues are addressed in this work. A new dataset consisting of nine pairs of images is designed to benchmark the accuracy of neural networks using one-pair spatiotemporal fusion with neural-network-based models. Notably, the size of each image is significantly larger compared to other datasets used to train neural networks. A comprehensive comparison of the radiometric, spectral, and structural losses is made using fourteen fusion algorithms and five datasets to illustrate the differences in the performance of spatiotemporal fusion algorithms with regard to various sensors and image sizes. A change detection experiment is conducted to test if it is feasible to detect changes in specific land covers using the fusion results. The experiment shows that convolutional neural networks can be used for one-pair spatiotemporal fusion if the sizes of individual images are adequately large. It also confirms that the spatiotemporally fused images can be used for change detection in certain scenes.
机构:
Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R ChinaNortheast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
Jing, Weipeng
Lou, Tongtong
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R ChinaNortheast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
Lou, Tongtong
Wang, Zeyu
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
Univ Sanya, Sch Informat & Intelligence Engn, Sanya 572000, Peoples R ChinaNortheast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
Wang, Zeyu
Zou, Weitao
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R ChinaNortheast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
Zou, Weitao
Xu, Zekun
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R ChinaNortheast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
Xu, Zekun
Mohaisen, Linda
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Technol, Jeddah 21589, Saudi ArabiaNortheast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
Mohaisen, Linda
Li, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R ChinaNortheast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
Li, Chao
Wang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R ChinaNortheast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
机构:
China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou, Jiangsu, Peoples R China
Zhang, Hua
Sun, Yue
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou, Jiangsu, Peoples R China
Sun, Yue
Shi, Wenzhong
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Smart Cities Res Inst, Dept Land Surveying & Geoinformat, Kowloon, Hong Kong, Peoples R ChinaChina Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou, Jiangsu, Peoples R China
Shi, Wenzhong
Guo, Dizhou
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou, Jiangsu, Peoples R China
Guo, Dizhou
Zheng, Nanshan
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou, Jiangsu, Peoples R China