Q-CURVES, HECKE CHARACTERS, AND SOME DIOPHANTINE EQUATIONS II

被引:0
|
作者
Pacetti, Ariel [1 ]
Torcomian, Lucas Villagra [2 ]
机构
[1] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Dept Math, P-3810193 Aveiro, Portugal
[2] Univ Nacl Cordoba, FAMAF CIEM, RA-5000 Cordoba, Argentina
关键词
Q-curves; Diophantine equations; ELLIPTIC-CURVES; GALOIS REPRESENTATIONS; NUMBER; IRREDUCIBILITY;
D O I
10.5565/PUBLMAT6722304
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the article [25] a general procedure to study solutions of the equations x4 - dy2 = zp was presented for negative values of d. The purpose of the present article is to extend our previous results to positive values of d. On doing so, & RADIC; & RADIC; we give a description of the extension Q( d, & RADIC;�)/Q( d) (where E is a fundamental & RADIC; unit) needed to prove the existence of a Hecke character over Q( d) with prescribed local conditions. We also extend some "large image" results due to Ellenberg regarding images of Galois representations coming from Q -curves from imaginary to real quadratic fields.
引用
收藏
页码:569 / 599
页数:31
相关论文
共 47 条
  • [1] The modularity of some Q-curves
    Roberts, BB
    Washington, LC
    COMPOSITIO MATHEMATICA, 1998, 111 (01) : 35 - 49
  • [2] Multi-Frey Q-curves and the Diophantine equation a2+b6 = cn
    Bennett, Michael A.
    Chen, Imin
    ALGEBRA & NUMBER THEORY, 2012, 6 (04) : 707 - 730
  • [3] Modular congruences, Q-curves, and the diophantine equation x4+y4=zp
    Dieulefait, LV
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2005, 12 (03) : 363 - 369
  • [4] Q-curves and the Lebesgue-Nagell equation
    Bennett, Michael A.
    Michaud-Jacobs, Philippe
    Siksek, Samir
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (02): : 495 - 510
  • [5] Strongly modular models of Q-curves
    Bruin, Peter
    Ferraguti, Andrea
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (03) : 505 - 526
  • [6] Hyperelliptic parametrizations of Q-curves
    Bars, Francesc
    Gonzalez, Josep
    Xarles, Xavier
    RAMANUJAN JOURNAL, 2021, 56 (01) : 103 - 120
  • [7] ON L-FUNCTIONS OF QUADRATIC Q-CURVES
    Bruin, Peter
    Ferraguti, Andrea
    MATHEMATICS OF COMPUTATION, 2018, 87 (309) : 459 - 499
  • [8] Solving Fermat-type equations via modular Q-curves over polyquadratic fields
    Dieulefait, Luis
    Jimenez Urroz, Jorge
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 : 183 - 195
  • [9] THE MODULARITY OF Q-CURVES OF DEGREE 43
    Yamauchi, Takuya
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (04): : 1025 - 1035
  • [10] Q-curves over odd degree number fields
    Cremona, J. E.
    Najman, Filip
    RESEARCH IN NUMBER THEORY, 2021, 7 (04)