Properties of TiC-reinforced Cu-W alloys prepared by wire arc additive manufacturing

被引:6
|
作者
Shao, Yuerui [1 ]
Liu, Yue [1 ]
Wu, Dongting [2 ]
Song, Zhongcai [4 ]
Guo, Fuqiang [1 ]
Zou, Yong [3 ]
机构
[1] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
[2] Shandong Univ, Sch Mat Sci & Engn, Jinan 250061, Peoples R China
[3] Shandong Univ, Shandong Engn & Technol Res Ctr Modern Welding, Jinan 250061, Peoples R China
[4] Shandong Inst Prod Qual Inspect, Jinan 250102, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive manufacturing; Cu -W alloys; Agglomeration; Interface; High temperature wear properties; COMPOSITE; MICROSTRUCTURE; TEMPERATURE; INFILTRATION; PERFORMANCE; DEPOSITION; BEHAVIOR; POWDERS; METAL;
D O I
10.1016/j.ijrmhm.2023.106315
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, Cu-W alloys with different TiC additions were prepared by wire arc additive manufacturing (WAAM) technology with Cold Metal Transfer (CMT) melting copper-based flux cored wire. In the additive manufacturing process, W and TiC with high melting point directly transited to the molten pool as solid phase. When the addition of TiC was small, most of TiC was gathered around the W particles in Cu-W alloys, which was conducive to enhancing interface bonding strength. With the increased of TiC content, the electrical conductivity of Cu-W alloys was decreased, microhardness and high temperature wear resistance were increased. When the addition of TiC was more than 3 wt%, the agglomeration of TiC degrades the performance of Cu-W alloys. Cu-W alloys with 3 wt% TiC addition show the best performance, includes high microhardness and high wear resistance with low loss of electrical conductivity.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Analysis of Machinability on Properties of Inconel 718 Wire and Arc Additive Manufacturing Products
    dos Santos, Gustavo Quadra Vieira
    Kaneko, Jun'ichi
    Abe, Takeyuki
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2024, 8 (01):
  • [22] Effects of Zr addition on properties and vacuum arc characteristics of Cu-W alloy
    Yang, Xiaohong
    Zou, Juntao
    Xiao, Peng
    Wang, Xianhui
    VACUUM, 2014, 106 : 16 - 20
  • [23] Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing
    Wu Dongjiang
    Liu Dehua
    Zhang Ziao
    Zhang Yilun
    Niu Fangyong
    Ma Guangyi
    ACTA METALLURGICA SINICA, 2023, 59 (06) : 767 - 776
  • [24] In Situ Wire plus Powder Synchronous Arc Additive Manufacturing of Ti-Cu Alloys
    Su, Chuanchu
    Wang, Yanhu
    Wu, Weimin
    Konovalov, Sergey
    Huang, Lei
    Chen, Xizhang
    Qin, Shuyang
    3D PRINTING AND ADDITIVE MANUFACTURING, 2024, 11 (01) : 163 - 170
  • [25] Microstructural characteristics and cracking mechanism of Al-Cu alloys in wire arc additive manufacturing
    Xu, Min
    Zhang, Hongda
    Yuan, Tao
    Yan, Zhaoyang
    Chen, Shujun
    MATERIALS CHARACTERIZATION, 2023, 197
  • [26] Influence of Ageing Treatment on Microstructure and Mechanical Properties of GH4169 Alloy Prepared Using Wire Arc Additive Manufacturing
    You, Xuewen
    Song, Xinli
    Geng, Wei
    Li, Zhishen
    METALS, 2024, 14 (10)
  • [27] Microstructure and Mechanical Properties of Cu-6.5%Al Alloy Deposited by Wire Arc Additive Manufacturing
    Yanhu Wang
    Chuanchu Su
    Sergey Konovalov
    Metallography, Microstructure, and Analysis, 2021, 10 : 634 - 641
  • [28] Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: a review
    Omiyale, B. O.
    Olugbade, T. O.
    Abioye, T. E.
    Farayibi, P. K.
    MATERIALS SCIENCE AND TECHNOLOGY, 2022, 38 (07) : 391 - 408
  • [29] Microstructure and Mechanical Properties of Cu-6.5%Al Alloy Deposited by Wire Arc Additive Manufacturing
    Wang, Yanhu
    Su, Chuanchu
    Konovalov, Sergey
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2021, 10 (05) : 634 - 641
  • [30] Microstructure and mechanical properties of AZ31 magnesium alloy prepared using wire arc additive manufacturing
    Wang, Jie
    Zhao, Zhanyong
    Bai, Peikang
    Zhang, Ruize
    Zhang, Zhen
    Wang, Liqing
    Du, Wenbo
    Wang, Fude
    Huang, Zhiquan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939