Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases

被引:16
作者
Onate, Angelo [1 ,2 ]
Sanhueza, Juan Pablo [1 ]
Zegpi, Diabb [4 ]
Tuninetti, Victor [5 ]
Ramirez, Jesus [1 ]
Medina, Carlos [3 ]
Melendrez, Manuel [1 ]
Rojas, David [1 ]
机构
[1] Univ Concepcion, Fac Engn, Dept Mat Engn DIMAT, Edmundo Larenas 315, Concepcion, Chile
[2] Univ Bio, Fac Engn, Dept Mech Engn DIMEC, Bio,Ave Collao 1202, Concepcion, Chile
[3] Univ Concepcion, Fac Engn, Dept Mech Engn DIM, Edmundo Larenas 219, Concepcion, Chile
[4] Mondelez Int, Dept Cent Analyt Team CAT, 905 West Fulton Market,Suite 200, Chicago, IL USA
[5] Univ La Frontera, Dept Mech Engn, Francisco Salazar 01145, Temuco 4780000, Chile
关键词
Phase prediction; High entropy alloys; Machine Learning; Intermetallics prediction; SELECTION; DESIGN;
D O I
10.1016/j.jallcom.2023.171224
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work evaluated the phase prediction capability of high entropy alloys using four supervised machine learning models K-Nearest Neighbors (KNN), Multinomial Regression, Extreme Gradient Boosting (XGBoost), and Random Forest. The study addresses the challenge of predicting multicomponent alloys by considering the overlapping of multicategorical stability parameters. Eight prediction classes (FCC, BCC, FCC+BCC, FCC+Im, BCC+Im, FCC+BCC+Im, Im and AM) were used. Finally, the predicted results were compared with those of two new alloys fabricated by induction melting in a controlled atmosphere using X-ray diffraction (XRD). The results indicate that with a robust database, appropriate data treatment, and training, satisfactory and competitive prediction indicators can be obtained with traditional machine learning predictions based on four prediction classes: Solid Solution (SS), Solid Solution with Intermetallic (SS+Im), intermetallic (Im), and amorphous (AM). The best predictive model obtained from the four evaluated models was Random Forest, with an accuracy of 72.8% and ROC AUC of 93.1%.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] The intrinsic strength prediction by machine learning for refractory high entropy alloys
    Yan, Yong-Gang
    Wang, Kun
    TUNGSTEN, 2023, 5 (04) : 531 - 538
  • [42] Machine learning guided phase formation prediction of high entropy alloys
    Qu, Nan
    Liu, Yong
    Zhang, Yan
    Yang, Danni
    Han, Tianyi
    Liao, Mingqing
    Lai, Zhonghong
    Zhu, Jingchuan
    Zhang, Lin
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [43] A yield strength prediction framework for refractory high-entropy alloys based on machine learning
    Ding, Shujian
    Wang, Weili
    Zhang, Yifan
    Ren, Wei
    Weng, Xiang
    Chen, Jian
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 125
  • [44] Machine learning guided phase formation prediction of high entropy alloys
    Qu, Nan
    Liu, Yong
    Zhang, Yan
    Yang, Danni
    Han, Tianyi
    Liao, Mingqing
    Lai, Zhonghong
    Zhu, Jingchuan
    Zhang, Lin
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [45] Machine learning guided phase formation prediction of high entropy alloys
    Qu N.
    Liu Y.
    Zhang Y.
    Yang D.
    Han T.
    Liao M.
    Lai Z.
    Zhu J.
    Zhang L.
    Materials Today Communications, 2022, 32
  • [46] Predictive descriptors in machine learning and data-enabled explorations of high-entropy alloys
    Roy, Ankit
    Balasubramanian, Ganesh
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 193
  • [47] Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys
    Dai, Dongbo
    Xu, Tao
    Wei, Xiao
    Ding, Guangtai
    Xu, Yan
    Zhang, Jincang
    Zhang, Huiran
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 175 (175)
  • [48] Accelerated Design for High-Entropy Alloys Based on Machine Learning and Multiobjective Optimization
    Ma, Yingying
    Li, Minjie
    Mu, Yongkun
    Wang, Gang
    Lu, Wencong
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (19) : 6029 - 6042
  • [49] Phase formation prediction of high-entropy alloys: a deep learning study
    Zhu, Wenhan
    Huo, Wenyi
    Wang, Shiqi
    Wang, Xu
    Ren, Kai
    Tan, Shuyong
    Fang, Feng
    Xie, Zonghan
    Jiang, Jianqing
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 18 : 800 - 809
  • [50] An end-to-end machine learning framework exploring phase formation for high entropy alloys
    Zhang, Hui-ran
    Hu, Rui
    Liu, Xi
    LI, Sheng-zhou
    Zhang, Guang-jie
    Qian, Quan
    Ding, Guang-tai
    Dai, Dong-bo
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2023, 33 (07) : 2110 - 2120