Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases

被引:16
作者
Onate, Angelo [1 ,2 ]
Sanhueza, Juan Pablo [1 ]
Zegpi, Diabb [4 ]
Tuninetti, Victor [5 ]
Ramirez, Jesus [1 ]
Medina, Carlos [3 ]
Melendrez, Manuel [1 ]
Rojas, David [1 ]
机构
[1] Univ Concepcion, Fac Engn, Dept Mat Engn DIMAT, Edmundo Larenas 315, Concepcion, Chile
[2] Univ Bio, Fac Engn, Dept Mech Engn DIMEC, Bio,Ave Collao 1202, Concepcion, Chile
[3] Univ Concepcion, Fac Engn, Dept Mech Engn DIM, Edmundo Larenas 219, Concepcion, Chile
[4] Mondelez Int, Dept Cent Analyt Team CAT, 905 West Fulton Market,Suite 200, Chicago, IL USA
[5] Univ La Frontera, Dept Mech Engn, Francisco Salazar 01145, Temuco 4780000, Chile
关键词
Phase prediction; High entropy alloys; Machine Learning; Intermetallics prediction; SELECTION; DESIGN;
D O I
10.1016/j.jallcom.2023.171224
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work evaluated the phase prediction capability of high entropy alloys using four supervised machine learning models K-Nearest Neighbors (KNN), Multinomial Regression, Extreme Gradient Boosting (XGBoost), and Random Forest. The study addresses the challenge of predicting multicomponent alloys by considering the overlapping of multicategorical stability parameters. Eight prediction classes (FCC, BCC, FCC+BCC, FCC+Im, BCC+Im, FCC+BCC+Im, Im and AM) were used. Finally, the predicted results were compared with those of two new alloys fabricated by induction melting in a controlled atmosphere using X-ray diffraction (XRD). The results indicate that with a robust database, appropriate data treatment, and training, satisfactory and competitive prediction indicators can be obtained with traditional machine learning predictions based on four prediction classes: Solid Solution (SS), Solid Solution with Intermetallic (SS+Im), intermetallic (Im), and amorphous (AM). The best predictive model obtained from the four evaluated models was Random Forest, with an accuracy of 72.8% and ROC AUC of 93.1%.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Descriptors for phase prediction of high entropy alloys using interpretable machine learning
    Zhao, Shang
    Yuan, Ruihao
    Liao, Weijie
    Zhao, Yatong
    Wang, Jun
    Li, Jinshan
    Lookman, Turab
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (05) : 2807 - 2819
  • [32] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Chang, Yao-Jen
    Jui, Chia-Yung
    Lee, Wen-Jay
    Yeh, An-Chou
    JOM, 2019, 71 (10) : 3433 - 3442
  • [33] Enhanced phase prediction of high-entropy alloys through machine learning and data augmentation
    Wu, Song
    Song, Zihao
    Wang, Jianwei
    Niu, Xiaobin
    Chen, Haiyuan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (02) : 717 - 729
  • [34] Overview:recent studies of machine learning in phase prediction of high entropy alloys
    Yong-Gang Yan
    Dan Lu
    Kun Wang
    Tungsten, 2023, 5 (01) : 32 - 49
  • [35] Overview: recent studies of machine learning in phase prediction of high entropy alloys
    Yong-Gang Yan
    Dan Lu
    Kun Wang
    Tungsten, 2023, 5 : 32 - 49
  • [36] Phase prediction in high-entropy alloys with multi-label artificial neural network
    Klimenko, Denis
    Stepanov, Nikita
    Ryltsev, Roman
    Zherebtsov, Sergey
    INTERMETALLICS, 2022, 151
  • [37] Machine learning guided BCC or FCC phase prediction in high entropy alloys
    He, Zhongping
    Zhang, Huan
    Cheng, Hong
    Ge, Meiling
    Si, Tianyu
    Che, Lun
    Zheng, Kaiyuan
    Zeng, Lingrong
    Wang, Qingyuan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 29 : 3477 - 3486
  • [38] High entropy alloys for hydrogen storage applications: A machine learning-based approach
    Radhika, N.
    Niketh, Madabhushi Siri
    Akhil, U. V.
    Adediran, Adeolu A.
    Jen, Tien-Chien
    RESULTS IN ENGINEERING, 2024, 23
  • [39] Machine Learning-Based Design of Superhard High-Entropy Nitride Coatings
    Zhang, Xiangyu
    Jia, Binyuan
    Zeng, Zhong
    Zeng, Xiaomei
    Wan, Qiang
    Pogrebnjak, Alexander
    Zhang, Jun
    Pelenovich, Vasiliy
    Yang, Bing
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (28) : 36911 - 36922
  • [40] Machine learning prediction and characterization of sigma-free high-entropy alloys
    Mehranpour, Mohammad Sajad
    Koushki, Ali
    Madahi, Seyed Soroush Karimi
    Kim, Hyoung Seop
    Shahmir, Hamed
    MATERIALS CHARACTERIZATION, 2024, 212