Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases

被引:16
作者
Onate, Angelo [1 ,2 ]
Sanhueza, Juan Pablo [1 ]
Zegpi, Diabb [4 ]
Tuninetti, Victor [5 ]
Ramirez, Jesus [1 ]
Medina, Carlos [3 ]
Melendrez, Manuel [1 ]
Rojas, David [1 ]
机构
[1] Univ Concepcion, Fac Engn, Dept Mat Engn DIMAT, Edmundo Larenas 315, Concepcion, Chile
[2] Univ Bio, Fac Engn, Dept Mech Engn DIMEC, Bio,Ave Collao 1202, Concepcion, Chile
[3] Univ Concepcion, Fac Engn, Dept Mech Engn DIM, Edmundo Larenas 219, Concepcion, Chile
[4] Mondelez Int, Dept Cent Analyt Team CAT, 905 West Fulton Market,Suite 200, Chicago, IL USA
[5] Univ La Frontera, Dept Mech Engn, Francisco Salazar 01145, Temuco 4780000, Chile
关键词
Phase prediction; High entropy alloys; Machine Learning; Intermetallics prediction; SELECTION; DESIGN;
D O I
10.1016/j.jallcom.2023.171224
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work evaluated the phase prediction capability of high entropy alloys using four supervised machine learning models K-Nearest Neighbors (KNN), Multinomial Regression, Extreme Gradient Boosting (XGBoost), and Random Forest. The study addresses the challenge of predicting multicomponent alloys by considering the overlapping of multicategorical stability parameters. Eight prediction classes (FCC, BCC, FCC+BCC, FCC+Im, BCC+Im, FCC+BCC+Im, Im and AM) were used. Finally, the predicted results were compared with those of two new alloys fabricated by induction melting in a controlled atmosphere using X-ray diffraction (XRD). The results indicate that with a robust database, appropriate data treatment, and training, satisfactory and competitive prediction indicators can be obtained with traditional machine learning predictions based on four prediction classes: Solid Solution (SS), Solid Solution with Intermetallic (SS+Im), intermetallic (Im), and amorphous (AM). The best predictive model obtained from the four evaluated models was Random Forest, with an accuracy of 72.8% and ROC AUC of 93.1%.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Machine learning guided prediction of dynamic energy release in high-entropy alloys
    Zhao, Fengyuan
    Zhang, Zhouran
    Ye, Yicong
    Li, Yahao
    Li, Shun
    Tang, Yu
    Zhu, Li'an
    Bai, Shuxin
    MATERIALS & DESIGN, 2024, 246
  • [22] Structure prediction in high-entropy alloys with machine learning
    Zhao, D. Q.
    Pan, S. P.
    Zhang, Y.
    Liaw, P. K.
    Qiao, J. W.
    APPLIED PHYSICS LETTERS, 2021, 118 (23)
  • [23] Phase prediction for high-entropy alloys using generative adversarial network and active learning based on small datasets
    Chen, Cun
    Zhou, Hengru
    Long, Weimin
    Wang, Gang
    Ren, Jingli
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (12) : 3615 - 3627
  • [24] Phase prediction for high-entropy alloys using generative adversarial network and active learning based on small datasets
    Cun Chen
    HengRu Zhou
    WeiMin Long
    Gang Wang
    JingLi Ren
    Science China Technological Sciences, 2023, 66 : 3615 - 3627
  • [25] Machine Learning-Based Prediction of Stability in High-Entropy Nitride Ceramics
    Lin, Tianyu
    Wang, Ruolan
    Liu, Dazhi
    CRYSTALS, 2024, 14 (05)
  • [26] Phase Prediction in High Entropy Alloys by Various Machine Learning Modules Using Thermodynamic and Configurational Parameters
    Mandal, Pritam
    Choudhury, Amitava
    Mallick, Amitava Basu
    Ghosh, Manojit
    METALS AND MATERIALS INTERNATIONAL, 2023, 29 (01) : 38 - 52
  • [27] Prediction of phases and mechanical properties of magnesium-based high-entropy alloys using machine learning
    Otieno, Robert
    Odhong, Edward, V
    Ondieki, Charles
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2024, 36 (10)
  • [28] Interpretable Machine Learning Model-Based Phase Prediction for Refractory High-Entropy Alloys
    Zhao Fengyuan
    Ye Yicong
    Zhang Zhouran
    Li Yahao
    Wang Jie
    Tang Yu
    Li Shun
    Bai Shuxin
    RARE METAL MATERIALS AND ENGINEERING, 2023, 52 (04) : 1192 - 1200
  • [29] Improving phase prediction accuracy for high entropy alloys with Machine learning
    Risal, Sandesh
    Zhu, Weihang
    Guillen, Pablo
    Sun, Li
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 192
  • [30] Machine Learning Advances in High-Entropy Alloys: A Mini-Review
    Sun, Yibo
    Ni, Jun
    ENTROPY, 2024, 26 (12)