A unified framework for double sweep methods for the Helmholtz equation

被引:0
作者
Bouziani, Nacime [1 ]
Nataf, Frederic [2 ,3 ]
Tournier, Pierre-Henri [2 ,3 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Univ Paris 06, Lab JL Lions, 4 Pl Jussieu, F-75005 Paris, France
[3] ALPINES INRIA, Paris, France
关键词
Domain decomposition methods; Helmholtz problem; Wave propagation phenomena; High performance computing; OPTIMIZED SCHWARZ METHODS; DECOMPOSITION METHOD; BOUNDARY-CONDITIONS; POLARIZED TRACES; DOMAIN; PRECONDITIONER; ALGORITHM; LAYER;
D O I
10.1016/j.jcp.2023.112305
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider sweeping domain decomposition preconditioners to solve the Helmholtz equation in the case of stripwise domain decomposition with or without overlaps. We unify their derivation and convergence studies by expressing them as Jacobi, Gauss-Seidel, and Symmetric Gauss-Seidel methods for different numbering of the unknowns. The proposed framework enables theoretical comparisons between the double sweep methods in [30,39] and those in [34,38,35]. Additionally, it facilitates the introduction of a new sweeping algorithm. We provide numerical test cases to assess the validity of the theoretical studies.
引用
收藏
页数:21
相关论文
共 41 条
[1]   A fully asynchronous multifrontal solver using distributed dynamic scheduling [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY ;
Koster, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :15-41
[2]   RADIATION BOUNDARY-CONDITIONS FOR WAVE-LIKE EQUATIONS [J].
BAYLISS, A ;
TURKEL, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) :707-725
[3]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[4]   An exact bounded PML for the Helmholtz equation [J].
Bermúdez, A ;
Hervella-Nieto, L ;
Prieto, A ;
Rodríguez, R .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (11) :803-808
[5]   DOMAIN DECOMPOSITION PRECONDITIONING FOR THE HIGH-FREQUENCY TIME-HARMONIC MAXWELL EQUATIONS WITH ABSORPTION [J].
Bonazzoli, M. ;
Dolean, V ;
Graham, I. G. ;
Spence, E. A. ;
Tournier, R-H .
MATHEMATICS OF COMPUTATION, 2019, 88 (320) :2559-2604
[6]   A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation [J].
Boubendir, Y. ;
Antoine, X. ;
Geuzaine, C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (02) :262-280
[7]   Controllability methods for the computation of time-periodic solutions;: application to scattering [J].
Bristeau, MO ;
Glowinski, R ;
Périaux, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (02) :265-292
[8]  
Brougois A., 1990, EAEG workshop-practical aspects of seismic data inversion
[9]   A SOURCE TRANSFER DOMAIN DECOMPOSITION METHOD FOR HELMHOLTZ EQUATIONS IN UNBOUNDED DOMAIN [J].
Chen, Zhiming ;
Xiang, Xueshuang .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (04) :2331-2356
[10]   A 3D PERFECTLY MATCHED MEDIUM FROM MODIFIED MAXWELLS EQUATIONS WITH STRETCHED COORDINATES [J].
CHEW, WC ;
WEEDON, WH .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1994, 7 (13) :599-604