Influence of the cooling rate on the solidification path and microstructure of a AlCoCrFeNi2.1 alloy

被引:6
|
作者
Fernandes Oliveira, Pedro Henrique [1 ]
Siqueira Mancilha, Pedro Henrique [1 ]
Valenzuela Reyes, Rodrigo Andre [2 ]
de Gouveia, Guilherme Lisboa [1 ,2 ]
Bolfarini, Claudemiro [1 ,2 ]
Spinelli, Jose Eduardo [1 ,2 ]
Coury, Francisco Gil [1 ,2 ]
机构
[1] Univ Fed Sao Carlos, Dept Mat Engn, Rod,Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Grad Program Mat Sci & Engn, Rod,Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
AlCoCrFeNi2; 1; alloy; Eutectic high entropy alloy; Solidification; Microstructure; Hardness; HIGH-ENTROPY ALLOY; MECHANICAL-PROPERTIES; DUCTILITY; STRENGTH; DESIGN;
D O I
10.1016/j.matchar.2023.113121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The AlCoCrFeNi2.1 alloy is a promising eutectic high entropy alloy which may act as an in-situ composite, showing a trade-off between mechanical properties and ductility. Controlling the microstructure formation is crucial for achieving the best balance since it is closely related to the cooling rates during solidification. Hence, the present study determined the relationship between different cooling rates and the formed microstructures. As such, the AlCoCrFeNi2.1 alloy was subjected to a directional solidification process so that samples solidified at different cooling rates could be generated. The examined samples corresponded to a range from 1 to 6 degrees C/s, which resulted in microstructures composed of primary dendrites and uncoupled eutectic, with varying secondary dendritic spacings from 18 to 54 & mu;m and eutectic spacings from 4.5 to 10 & mu;m. The use of CALPHAD, XRD, SEM-EDS, and EBSD phase mapping enabled to determine that the primary FCC dendrites formed in all samples enveloped by the FCC + B2 eutectic. Moreover, the solidification cooling rate affected both dendritic (primary phase) and eutectic length-scales. Finally, the solidification sequence path was able to be changed, and the primary FCC dendrites were also able to form, due to the non-equilibrium nature of the solidification process, which imposed particular segregation and growth conditions.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Microstructure, Crystallographic Orientation and Mechanical Property in AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Under Magnetic Field-Assisted Directional Solidification
    Wang, Jiantao
    Long, Zhipeng
    Jiang, Pinfang
    Fautrelle, Yves
    Li, Xi
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2020, 51 (07): : 3504 - 3517
  • [32] Effect of lamellar microstructure on fatigue crack initiation and propagation in AlCoCrFeNi2.1 eutectic high-entropy alloy
    Chen, Wei
    Wang, Yuting
    Wang, Luling
    Zhou, Jianqiu
    ENGINEERING FRACTURE MECHANICS, 2021, 246
  • [33] Phase separation of AlCoCrFeNi2.1 eutectic high-entropy alloy during directional solidification and their effect on tensile properties
    Zheng, Huiting
    Chen, Ruirun
    Qin, Gang
    Li, Xinzhong
    Su, Yanqing
    Ding, Hongsheng
    Guo, Jingjie
    Fu, Hengzhi
    INTERMETALLICS, 2019, 113
  • [34] Influence of anelastic recovery on the cyclic creep behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy
    Lu, Chuanyang
    Wang, Peng
    Luo, Siyu
    Li, Yafei
    Wang, Run-Zi
    He, Yanming
    Gao, Zengliang
    Tu, Shan-Tung
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 180
  • [35] Influence of NbC particles on microstructure and wear properties of AlCoCrFeNi2.1 eutectic high-entropy alloy coatings prepared by laser cladding
    Jiang, Hui
    Li, Li
    Xie, Wenlong
    Wei, Chengbin
    Jia, Delong
    Li, Junru
    Li, Yanhui
    SURFACE & COATINGS TECHNOLOGY, 2025, 502
  • [36] Effect of heat treatment on microstructure and mechanical properties of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy
    Peng, Peng
    Feng, Xiaoning
    Li, Shengyuan
    Wei, Baolin
    Zhang, Mingyu
    Xu, Yuanli
    Zhang, Xudong
    Ma, Zhikun
    Wang, Jiatai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939
  • [37] Dynamic mechanical properties and microstructure evolution of AlCoCrFeNi2.1 eutectic high-entropy alloy at different temperatures
    Hu, Menglei
    Song, Kaikai
    Song, Weidong
    Journal of Alloys and Compounds, 2022, 892
  • [38] Microstructure and properties of AlCoCrFeNi2.1 eutectic high-entropy alloy formed by laser melting deposition (LMD)
    Liang, Zhuoheng
    Zhang, Yongzhong
    Liu, Yantao
    Zhu, Zhengwang
    Zhang, Haifeng
    MATERIALS LETTERS, 2022, 317
  • [39] Dynamic mechanical properties and microstructure evolution of AlCoCrFeNi2.1 eutectic high-entropy alloy at different temperatures
    Hu, Menglei
    Song, Kaikai
    Song, Weidong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 892
  • [40] Microstructure evolution and mechanical properties of plasma sprayed AlCoCrFeNi2.1 eutectic high-entropy alloy coatings
    Wang, Liangquan
    Zhang, Fanyong
    Ma, Honglu
    He, Senlong
    Yin, Fuxing
    SURFACE & COATINGS TECHNOLOGY, 2023, 471