Influence of the cooling rate on the solidification path and microstructure of a AlCoCrFeNi2.1 alloy

被引:7
|
作者
Fernandes Oliveira, Pedro Henrique [1 ]
Siqueira Mancilha, Pedro Henrique [1 ]
Valenzuela Reyes, Rodrigo Andre [2 ]
de Gouveia, Guilherme Lisboa [1 ,2 ]
Bolfarini, Claudemiro [1 ,2 ]
Spinelli, Jose Eduardo [1 ,2 ]
Coury, Francisco Gil [1 ,2 ]
机构
[1] Univ Fed Sao Carlos, Dept Mat Engn, Rod,Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Grad Program Mat Sci & Engn, Rod,Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
AlCoCrFeNi2; 1; alloy; Eutectic high entropy alloy; Solidification; Microstructure; Hardness; HIGH-ENTROPY ALLOY; MECHANICAL-PROPERTIES; DUCTILITY; STRENGTH; DESIGN;
D O I
10.1016/j.matchar.2023.113121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The AlCoCrFeNi2.1 alloy is a promising eutectic high entropy alloy which may act as an in-situ composite, showing a trade-off between mechanical properties and ductility. Controlling the microstructure formation is crucial for achieving the best balance since it is closely related to the cooling rates during solidification. Hence, the present study determined the relationship between different cooling rates and the formed microstructures. As such, the AlCoCrFeNi2.1 alloy was subjected to a directional solidification process so that samples solidified at different cooling rates could be generated. The examined samples corresponded to a range from 1 to 6 degrees C/s, which resulted in microstructures composed of primary dendrites and uncoupled eutectic, with varying secondary dendritic spacings from 18 to 54 & mu;m and eutectic spacings from 4.5 to 10 & mu;m. The use of CALPHAD, XRD, SEM-EDS, and EBSD phase mapping enabled to determine that the primary FCC dendrites formed in all samples enveloped by the FCC + B2 eutectic. Moreover, the solidification cooling rate affected both dendritic (primary phase) and eutectic length-scales. Finally, the solidification sequence path was able to be changed, and the primary FCC dendrites were also able to form, due to the non-equilibrium nature of the solidification process, which imposed particular segregation and growth conditions.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces
    Miao, Junwei
    Liang, Hui
    Zhang, Aijun
    He, Junyang
    Meng, Junhu
    Lu, Yiping
    TRIBOLOGY INTERNATIONAL, 2021, 153
  • [22] Simultaneous enhancement of strength and ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy via friction stir processing
    Wang, Tianhao
    Komarasamy, Mageshwari
    Shukla, Shivakant
    Mishra, Rajiv S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 766 : 312 - 317
  • [23] Strain-path controlled microstructure, texture and hardness evolution in cryo-deformed AlCoCrFeNi2.1 eutectic high entropy alloy
    Patel, A.
    Wani, I.
    Reddy, S. R.
    Narayanaswamy, S.
    Lozinko, A.
    Saha, R.
    Guo, S.
    Bhattacharjee, P. P.
    INTERMETALLICS, 2018, 97 : 12 - 21
  • [24] Understanding the microstructure evolution characteristics and mechanical properties of an AlCoCrFeNi2.1 high entropy alloy fabricated by laser energy deposition
    Guo, Weimin
    Zhang, Yan
    Ding, Ning
    Liu, Long
    Xu, Huixia
    Xu, Na
    Tian, Linan
    Liu, Guoqiang
    Dong, Dexiao
    Wang, Xiebin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 869
  • [25] Revealing the nano-grained microstructure and mechanical properties of electrochemical boronized AlCoCrFeNi2.1 eutectic high entropy alloy
    Dong, Jianxin
    Wu, Hongxing
    Chen, Ying
    Li, Pengfei
    Zhang, Fan
    Wu, Yunjie
    Hua, Ke
    Wang, Haifeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938
  • [26] Effect of remelting and heat treatment on the microstructure and mechanical properties AlCoCrFeNi2.1 eutectic high entropy alloy
    Jiang, Hui
    Ni, Zhiliang
    Lu, Shuoyi
    Li, Hong
    Li, Yanhui
    Dong, Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1020
  • [27] Microstructure and mechanical properties of AlCoCrFeNi2.1 eutectic high-entropy alloy synthesized by spark plasma sintering of gas-atomized powder
    Pan, Wenjie
    Fu, Peixin
    Li, Zhanjiang
    Chen, Hongxiang
    Tang, Qunhua
    Dai, Pinqiang
    Liu, Chao
    Lin, Le
    INTERMETALLICS, 2022, 144
  • [28] Significant transitions of microstructure and mechanical properties in laser additive manufacturing AlCoCrFeNi2.1 eutectic high-entropy alloy under heat treatment
    Lan, Liwei
    Zhang, Hongwei
    Yang, Zheyu
    Li, Changchun
    Hao, Xiaohu
    Wang, Wenxian
    Cui, Zeqin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 25 : 6250 - 6262
  • [29] A quantitative understanding on the mechanical behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy
    Wang, Yuting
    Chen, Wei
    Zhang, Jie
    Zhou, Jianqiu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 850
  • [30] Microstructural origins of impact resistance of AlCoCrFeNi2.1 eutectic high-entropy alloy
    Li, Jiansheng
    Zhou, Jian
    Liu, Yanfang
    Wei, Kang
    Liu, Jianfeng
    Xi, Yichun
    Li, Zhumin
    Liu, Tong
    Jiang, Wei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 890