Influence of the cooling rate on the solidification path and microstructure of a AlCoCrFeNi2.1 alloy

被引:6
|
作者
Fernandes Oliveira, Pedro Henrique [1 ]
Siqueira Mancilha, Pedro Henrique [1 ]
Valenzuela Reyes, Rodrigo Andre [2 ]
de Gouveia, Guilherme Lisboa [1 ,2 ]
Bolfarini, Claudemiro [1 ,2 ]
Spinelli, Jose Eduardo [1 ,2 ]
Coury, Francisco Gil [1 ,2 ]
机构
[1] Univ Fed Sao Carlos, Dept Mat Engn, Rod,Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Grad Program Mat Sci & Engn, Rod,Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
AlCoCrFeNi2; 1; alloy; Eutectic high entropy alloy; Solidification; Microstructure; Hardness; HIGH-ENTROPY ALLOY; MECHANICAL-PROPERTIES; DUCTILITY; STRENGTH; DESIGN;
D O I
10.1016/j.matchar.2023.113121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The AlCoCrFeNi2.1 alloy is a promising eutectic high entropy alloy which may act as an in-situ composite, showing a trade-off between mechanical properties and ductility. Controlling the microstructure formation is crucial for achieving the best balance since it is closely related to the cooling rates during solidification. Hence, the present study determined the relationship between different cooling rates and the formed microstructures. As such, the AlCoCrFeNi2.1 alloy was subjected to a directional solidification process so that samples solidified at different cooling rates could be generated. The examined samples corresponded to a range from 1 to 6 degrees C/s, which resulted in microstructures composed of primary dendrites and uncoupled eutectic, with varying secondary dendritic spacings from 18 to 54 & mu;m and eutectic spacings from 4.5 to 10 & mu;m. The use of CALPHAD, XRD, SEM-EDS, and EBSD phase mapping enabled to determine that the primary FCC dendrites formed in all samples enveloped by the FCC + B2 eutectic. Moreover, the solidification cooling rate affected both dendritic (primary phase) and eutectic length-scales. Finally, the solidification sequence path was able to be changed, and the primary FCC dendrites were also able to form, due to the non-equilibrium nature of the solidification process, which imposed particular segregation and growth conditions.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Solidification Microstructure of AlCoCrFeNi2.1 Eutectic High Entropy Alloy Ingots
    Nagase, Takeshi
    Takemura, Mamoru
    Matsumuro, Mitsuaki
    Maruyama, Toru
    MATERIALS TRANSACTIONS, 2018, 59 (02) : 255 - 264
  • [2] Rapid solidification of AlCoCrFeNi2.1 High-entropy Alloy
    Nassar, A.
    Mullis, A.
    Cochrane, R.
    Aslam, Z.
    Micklethwaite, S.
    Cao, L.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 900
  • [3] Quantification of microstructure in a eutectic high entropy alloy AlCoCrFeNi2.1
    Lozinko, Adrianna
    Mishin, Oleg V.
    Yu, Tianbo
    Klement, Uta
    Guo, Sheng
    Zhang, Yubin
    40TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE: METAL MICROSTRUCTURES IN 2D, 3D AND 4D, 2019, 580
  • [4] Effect of Nb on microstructure and properties of AlCoCrFeNi2.1 high entropy alloy
    Jiang, Hui
    Li, Li
    Ni, Zhiliang
    Qiao, Dongxu
    Zhang, Qiang
    Sui, Huaiming
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 290
  • [5] An AlCoCrFeNi2.1 high-entropy alloy coating with uniform microstructure and high hardness
    Zhang, Li
    Ji, Yan
    Ye, Qilu
    Yang, Bin
    MATERIALS LETTERS, 2023, 348
  • [6] Microstructure and Properties of Laser Surface Remelting AlCoCrFeNi2.1 High-Entropy Alloy
    Chen, Jingrun
    Zhang, Jing
    Li, Ke
    Zhuang, Dongdong
    Zang, Qianhao
    Chen, Hongmei
    Lu, Yandi
    Xu, Bo
    Zhang, Yan
    METALS, 2022, 12 (10)
  • [7] Effect of Alloying on Microstructure and Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
    Tian, Xue-Yao
    Zhang, Hong-Liang
    Nong, Zhi-Sheng
    Cui, Xue
    Gu, Ze-Hao
    Liu, Teng
    Li, Hong-Mei
    Arzikulov, Eshkuvat
    MATERIALS, 2024, 17 (18)
  • [8] Microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy manufactured by selective laser melting
    Yu, Tao
    Zhou, Guangming
    Cheng, Yuanguang
    Hu, Fuchao
    Jiang, Tianfan
    Sun, Tao
    Shen, Yifu
    Zhou, Yiming
    Li, Junping
    OPTICS AND LASER TECHNOLOGY, 2023, 163
  • [9] Microstructure and mechanical behavior of the directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy
    Wischi, M.
    Campo, K. N.
    Starck, L. F.
    da Fonseca, E. B.
    Lopes, E. S. N.
    Caram, R.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 20 : 811 - 820
  • [10] Influences of Milling Time and NbC on Microstructure of AlCoCrFeNi2.1 High Entropy Alloy by Mechanical Alloying
    Li, Li
    Jiang, Hui
    Ni, Zhiliang
    Han, Kaiming
    Wang, Rui
    Wang, Haixia
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2023, 38 (02): : 423 - 429