Influence of the cooling rate on the solidification path and microstructure of a AlCoCrFeNi2.1 alloy

被引:7
|
作者
Fernandes Oliveira, Pedro Henrique [1 ]
Siqueira Mancilha, Pedro Henrique [1 ]
Valenzuela Reyes, Rodrigo Andre [2 ]
de Gouveia, Guilherme Lisboa [1 ,2 ]
Bolfarini, Claudemiro [1 ,2 ]
Spinelli, Jose Eduardo [1 ,2 ]
Coury, Francisco Gil [1 ,2 ]
机构
[1] Univ Fed Sao Carlos, Dept Mat Engn, Rod,Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Grad Program Mat Sci & Engn, Rod,Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
AlCoCrFeNi2; 1; alloy; Eutectic high entropy alloy; Solidification; Microstructure; Hardness; HIGH-ENTROPY ALLOY; MECHANICAL-PROPERTIES; DUCTILITY; STRENGTH; DESIGN;
D O I
10.1016/j.matchar.2023.113121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The AlCoCrFeNi2.1 alloy is a promising eutectic high entropy alloy which may act as an in-situ composite, showing a trade-off between mechanical properties and ductility. Controlling the microstructure formation is crucial for achieving the best balance since it is closely related to the cooling rates during solidification. Hence, the present study determined the relationship between different cooling rates and the formed microstructures. As such, the AlCoCrFeNi2.1 alloy was subjected to a directional solidification process so that samples solidified at different cooling rates could be generated. The examined samples corresponded to a range from 1 to 6 degrees C/s, which resulted in microstructures composed of primary dendrites and uncoupled eutectic, with varying secondary dendritic spacings from 18 to 54 & mu;m and eutectic spacings from 4.5 to 10 & mu;m. The use of CALPHAD, XRD, SEM-EDS, and EBSD phase mapping enabled to determine that the primary FCC dendrites formed in all samples enveloped by the FCC + B2 eutectic. Moreover, the solidification cooling rate affected both dendritic (primary phase) and eutectic length-scales. Finally, the solidification sequence path was able to be changed, and the primary FCC dendrites were also able to form, due to the non-equilibrium nature of the solidification process, which imposed particular segregation and growth conditions.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Rapid solidification of AlCoCrFeNi2.1 High-entropy Alloy
    Nassar, A.
    Mullis, A.
    Cochrane, R.
    Aslam, Z.
    Micklethwaite, S.
    Cao, L.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 900
  • [2] Solidification Microstructure of AlCoCrFeNi2.1 Eutectic High Entropy Alloy Ingots
    Nagase, Takeshi
    Takemura, Mamoru
    Matsumuro, Mitsuaki
    Maruyama, Toru
    MATERIALS TRANSACTIONS, 2018, 59 (02) : 255 - 264
  • [3] Effect of Nb on microstructure and properties of AlCoCrFeNi2.1 high entropy alloy
    Jiang, Hui
    Li, Li
    Ni, Zhiliang
    Qiao, Dongxu
    Zhang, Qiang
    Sui, Huaiming
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 290
  • [4] Rotary friction welding of AlCoCrFeNi2.1 eutectic high entropy alloy
    Li, Peng
    Sun, Haotian
    Wang, Shuai
    Hao, Xiaohu
    Dong, Honggang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 814 (814)
  • [5] Effect of Cr / Fe on the Microstructure and Corrosion Behaviors of AlCoCrFeNi2.1 Eutectic High-entropy Alloy
    Chen, Chen
    An, Yudong
    Yao, Hongwei
    Pu, Jibin
    CHINA SURFACE ENGINEERING, 2024, 37 (06) : 343 - 353
  • [6] Effect of lamellar microstructure on fatigue crack initiation and propagation in AlCoCrFeNi2.1 eutectic high-entropy alloy
    Chen, Wei
    Wang, Yuting
    Wang, Luling
    Zhou, Jianqiu
    ENGINEERING FRACTURE MECHANICS, 2021, 246
  • [7] Microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy manufactured by selective laser melting
    Yu, Tao
    Zhou, Guangming
    Cheng, Yuanguang
    Hu, Fuchao
    Jiang, Tianfan
    Sun, Tao
    Shen, Yifu
    Zhou, Yiming
    Li, Junping
    OPTICS AND LASER TECHNOLOGY, 2023, 163
  • [8] Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy
    Li, Peng
    Wang, Shuai
    Xia, Yueqing
    Hao, Xiaohu
    Dong, Honggang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 45 (45): : 59 - 69
  • [9] Interfacial microstructure evolution and mechanical properties of AlCoCrFeNi2.1 alloy by multilayer additive hot compression bonding
    Zhang, Yubo
    Ding, Chenghao
    Liu, Jiajing
    Lu, Yiping
    Li, Tingju
    INTERMETALLICS, 2023, 156
  • [10] Thermal stability, microstructure and texture evolution of thermomechanical processed AlCoCrFeNi2.1 eutectic high entropy alloy
    Asoushe, M. H.
    Hanzaki, A. Zarei
    Abedi, H. R.
    Mirshekari, B.
    Wegener, T.
    Sajadifar, S., V
    Niendorf, T.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 799