Comprehensive measurement of the near-infrared refractive index of GaAs at cryogenic temperatures

被引:4
|
作者
Jiang, Guo-Qiu [1 ,2 ,3 ,4 ]
Zhang, Qi-Hang [1 ,2 ,3 ,4 ]
Zhao, Jun-Yi [1 ,2 ,3 ,4 ]
Qiao, Yu-Kun [1 ,2 ,3 ,4 ]
Ge, Zhen-Xuan [1 ,2 ,3 ,4 ]
Liu, Run-Ze [1 ,2 ,3 ,4 ]
Chung, Tung-Hsun [3 ,5 ]
Lu, Chao-Yang [1 ,2 ,3 ,4 ,5 ]
Huo, Yong-Heng [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
[4] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Shanghai 201315, Peoples R China
[5] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
MICROCAVITY;
D O I
10.1364/OL.491357
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The refractive index is a critical parameter in optical and photonic device design. However, due to the lack of available data, precise designs of devices working in low temperatures are still frequently limited. In this work, we have built a homemade spectroscopic ellipsometer (SE) and measured the refractive index of GaAs at a matrix of temperatures (4 K < T < 295 K) and photon wavelengths (700 nm < & lambda; < 1000 nm) with a system error of & SIM;0.04. We verified the credibility of the SE results by comparing them with afore-reported data at room temperature and with higher precision values measured by vertical GaAs cavity at cryogenic temperatures. This work makes up for the lack of the near-infrared refractive index of GaAs at cryo-genic temperatures and provides accurate reference data for semiconductor device design and fabrication. & COPY; 2023 Optica Publishing Group
引用
收藏
页码:3507 / 3510
页数:4
相关论文
共 50 条
  • [31] Tailored silver coated polymer pillar metasurfaces for near-infrared refractive index sensing applications
    Nguyen, Xuan Bach
    Nguyen, Huu Tu
    Pham, Thanh Son
    Le, Khai Q.
    Ngo, Quang Minh
    PHYSICA B-CONDENSED MATTER, 2024, 689
  • [32] Highly sensitive refractive index sensing with a perfect MIM absorber in visible to near-infrared range
    Kaium, Sk Md Abdul
    Mollah, Md Aslam
    NANOTECHNOLOGY, 2025, 36 (16)
  • [33] Optical analysis of the refractive index and birefringence of hexagonal boron nitride from the visible to near-infrared
    Rah, Yoonhyuk
    Jin, Yeonghoon
    Kim, Sejeong
    Yu, Kyoungsik
    OPTICS LETTERS, 2019, 44 (15) : 3797 - 3800
  • [34] Temperature-dependent refractive index of potassium acid phthalate (KAP) in the visible and near-infrared
    Moutzouris, K.
    Stavrakas, I.
    Triantis, D.
    Enculescu, M.
    OPTICAL MATERIALS, 2011, 33 (06) : 812 - 816
  • [35] IDENTIFICATION OF HEME MACROCYCLE TYPE BY NEAR-INFRARED MAGNETIC CIRCULAR-DICHROISM SPECTROSCOPY AT CRYOGENIC TEMPERATURES
    PENG, QY
    TIMKOVICH, R
    LOEWEN, PC
    PETERSON, J
    FEBS LETTERS, 1992, 309 (02) : 157 - 160
  • [36] REFRACTIVE-INDEX MEASUREMENTS OF AMTIR-1 AT CRYOGENIC TEMPERATURES
    NOFZIGER, MJ
    WOLFE, WL
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1984, 505 : 118 - 124
  • [37] Temperature-dependent refractive index of Cleartran® ZnS to cryogenic temperatures
    Leviton, Douglas B.
    Frey, Bradley J.
    CRYOGENIC OPTICAL SYSTEMS AND INSTRUMENTS 2013, 2013, 8863
  • [38] Refractive-index dispersion measurement of balk optical materials using a fiber Raman laser widely tunable in the visible and near-infrared
    Ilev, IK
    Kumagai, H
    Toyoda, K
    OPTICAL REVIEW, 1997, 4 (1A) : 61 - 64
  • [39] Refractive-index dispersion measurement of bulk optical materials using a fiber raman laser widely tunable in the visible and near-infrared
    Ilko K. Ilev
    Hiroshi Kumagai
    Koichi Toyoda
    Optical Review, 1997, 4 (1) : A61 - A64
  • [40] Simple technique for determining the refractive index of phase-change materials using near-infrared reflectometry
    Gemo, E.
    Kesava, S., V
    Ruiz De Galarreta, C.
    Trimby, L.
    Garcia-Cuevas Carrillo, S.
    Riede, M.
    Baldycheva, A.
    Alexeev, A.
    Wright, C. D.
    OPTICAL MATERIALS EXPRESS, 2020, 10 (07): : 1675 - 1686