Stochastic domain wall-magnetic tunnel junction artificial neurons for noise-resilient spiking neural networks

被引:10
作者
Leonard, Thomas [1 ]
Liu, Samuel [1 ]
Jin, Harrison [1 ]
Incorvia, Jean Anne C. [1 ]
机构
[1] Univ Texas Austin, Elect & Comp Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Domain walls - Gaussian noise (electronic) - Magnetic devices - Magnetic domains - Neural networks - Neurons - Stochastic systems - Tunnel junctions;
D O I
10.1063/5.0152211
中图分类号
O59 [应用物理学];
学科分类号
摘要
The spatiotemporal nature of neuronal behavior in spiking neural networks (SNNs) makes SNNs promising for edge applications that require high energy efficiency. To realize SNNs in hardware, spintronic neuron implementations can bring advantages of scalability and energy efficiency. Domain wall (DW)-based magnetic tunnel junction (MTJ) devices are well suited for probabilistic neural networks given their intrinsic integrate-and-fire behavior with tunable stochasticity. Here, we present a scaled DW-MTJ neuron with voltage-dependent firing probability. The measured behavior was used to simulate a SNN that attains accuracy during learning compared to an equivalent, but more complicated, multi-weight DW-MTJ device. The validation accuracy during training was also shown to be comparable to an ideal leaky integrate and fire device. However, during inference, the binary DW-MTJ neuron outperformed the other devices after Gaussian noise was introduced to the Fashion-MNIST classification task. This work shows that DW-MTJ devices can be used to construct noise-resilient networks suitable for neuromorphic computing on the edge.
引用
收藏
页数:6
相关论文
共 35 条
  • [1] Domain wall-magnetic tunnel junction spin-orbit torque devices and circuits for in-memory computing
    Alamdar, Mahshid
    Leonard, Thomas
    Cui, Can
    Rimal, Bishweshwor P.
    Xue, Lin
    Akinola, Otitoaleke G.
    Xiao, T. Patrick
    Friedman, Joseph S.
    Bennett, Christopher H.
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    [J]. APPLIED PHYSICS LETTERS, 2021, 118 (11)
  • [2] Resonate and fire neuron with fixed magnetic skyrmions
    Azam, Md. Ali
    Bhattacharya, Dhritiman
    Querlioz, Damien
    Atulasimha, Jayasimha
    [J]. JOURNAL OF APPLIED PHYSICS, 2018, 124 (15)
  • [3] Current-induced domain wall motion
    Beach, G. S. D.
    Tsoi, M.
    Erskine, J. L.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (07) : 1272 - 1281
  • [4] Domain Wall Leaky Integrate-and-Fire Neurons With Shape-Based Configurable Activation Functions
    Brigner, Wesley H.
    Hassan, Naimul
    Hu, Xuan
    Bennett, Christopher H.
    Garcia-Sanchez, Felipe
    Cui, Can
    Velasquez, Alvaro
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    Friedman, Joseph S.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (05) : 2353 - 2359
  • [5] Graded-Anisotropy-Induced Magnetic Domain Wall Drift for an Artificial Spintronic Leaky Integrate-and-Fire Neuron
    Brigner, Wesley H.
    Hu, Xuan
    Hassan, Naimul
    Bennett, Christopher H.
    Incorvia, Jean Anne C.
    Garcia-Sanchez, Felipe
    Friedman, Joseph S.
    [J]. IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2019, 5 (01): : 19 - 24
  • [6] Maximized lateral inhibition in paired magnetic domain wall racetracks for neuromorphic computing
    Cui, Can
    Akinola, Otitoaleke G.
    Hassan, Naimul
    Bennett, Christopher H.
    Marinella, Matthew J.
    Friedman, Joseph S.
    Incorvia, Jean Anne C.
    [J]. NANOTECHNOLOGY, 2020, 31 (29)
  • [7] Loihi: A Neuromorphic Manycore Processor with On-Chip Learning
    Davies, Mike
    Srinivasa, Narayan
    Lin, Tsung-Han
    Chinya, Gautham
    Cao, Yongqiang
    Choday, Sri Harsha
    Dimou, Georgios
    Joshi, Prasad
    Imam, Nabil
    Jain, Shweta
    Liao, Yuyun
    Lin, Chit-Kwan
    Lines, Andrew
    Liu, Ruokun
    Mathaikutty, Deepak
    Mccoy, Steve
    Paul, Arnab
    Tse, Jonathan
    Venkataramanan, Guruguhanathan
    Weng, Yi-Hsin
    Wild, Andreas
    Yang, Yoonseok
    Wang, Hong
    [J]. IEEE MICRO, 2018, 38 (01) : 82 - 99
  • [8] A 0.086-mm2 12.7-pJ/SOP 64k-Synapse 256-Neuron Online-Learning Digital Spiking Neuromorphic Processor in 28-nm CMOS
    Frenkel, Charlotte
    Lefebvre, Martin
    Legat, Jean-Didier
    Bol, David
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (01) : 145 - 158
  • [9] Garello K., 2019, S VLSI CIRC IEEE
  • [10] Neuromorphic spintronics
    Grollier, J.
    Querlioz, D.
    Camsari, K. Y.
    Everschor-Sitte, K.
    Fukami, S.
    Stiles, M. D.
    [J]. NATURE ELECTRONICS, 2020, 3 (07) : 360 - 370