We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent, i.e., independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented.
机构:
Virginia Tech, Dept Math, Blacksburg, VA 24060 USA
Virginia Tech, Acad Data Sci, Blacksburg, VA USA
Emory Univ, Dept Math, Atlanta, GA USAVirginia Tech, Dept Math, Blacksburg, VA 24060 USA
Chung, Matthias
Krueger, Justin
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Dept Math, Blacksburg, VA 24060 USAVirginia Tech, Dept Math, Blacksburg, VA 24060 USA
Krueger, Justin
Liu, Honghu
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Dept Math, Blacksburg, VA 24060 USAVirginia Tech, Dept Math, Blacksburg, VA 24060 USA