First-order system least-squares finite element method for singularly perturbed Darcy equations

被引:1
|
作者
Fuhrer, Thomas [1 ]
Videman, Juha [2 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[2] Univ Lisbon, Dept Matemat, CAMGSD, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
Least-squares finite element method; Brinkman equation; Darcy equations; Singularly perturbed problem; First-order formulation; VIRTUAL ELEMENT; A-PRIORI; STOKES;
D O I
10.1051/m2an/2023049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent, i.e., independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented.
引用
收藏
页码:2283 / 2300
页数:18
相关论文
共 50 条