CTRANSNET: CONVOLUTIONAL NEURAL NETWORK COMBINED WITH TRANSFORMER FOR MEDICAL IMAGE SEGMENTATION

被引:2
作者
Zhang, Zhixin [1 ]
Jiang, Shuhao [1 ]
Pan, Xuhua [1 ]
机构
[1] Tianjin Univ Commerce, Informat Engn Dept, Tianjin 300134, Peoples R China
关键词
Medical image segmentation; deep learning; attention mechanism; ATTENTION; CNN;
D O I
10.31577/cai20232392
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Transformer has been widely used for many tasks in NLP before, but there is still much room to explore the application of the Transformer to the image domain. In this paper, we propose a simple and efficient hybrid Transformer framework, CTransNet, which combines self-attention and CNN to improve medi-cal image segmentation performance. Capturing long-range dependencies at differ-ent scales. To this end, this paper proposes an effective self-attention mechanism incorporating relative position information encoding, which can reduce the time complexity of self-attention from O(n2) to O(n), and a new self-attention decoder that can recover fine-grained features in encoder from skip connection. This paper aims to address the current dilemma of Transformer applications: i.e., the need to learn induction bias from large amounts of training data. The hybrid layer in CTransNet allows the Transformer to be initialized as a CNN without pre-training. We have evaluated the performance of CTransNet on several medical segmentation datasets. CTransNet shows superior segmentation performance, robustness, and great promise for generalization to other medical image segmentation tasks.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 50 条
  • [31] THE EFFECT OF PREPROCESSING ON CONVOLUTIONAL NEURAL NETWORKS FOR MEDICAL IMAGE SEGMENTATION
    de Raad, K. B.
    van Garderen, K. A.
    Smits, M.
    van der Voort, S. R.
    Incekara, F.
    Oei, E. H. G.
    Hirvasniemi, J.
    Klein, S.
    Starmans, M. P. A.
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 655 - 658
  • [32] ConvMedSegNet: A multi-receptive field depthwise convolutional neural network for medical image segmentation
    Peng Y.
    Yi X.
    Zhang D.
    Zhang L.
    Tian Y.
    Zhou Z.
    Computers in Biology and Medicine, 2024, 176
  • [33] EvoU-Net: An Evolutionary Deep Fully Convolutional Neural Network for Medical Image Segmentation
    Hassanzadeh, Tahereh
    Essam, Daryl
    Sarker, Ruhul
    PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 181 - 189
  • [34] TransGraphNet: A novel network for medical image segmentation based on transformer and graph convolution
    Zhang, Ju
    Ye, Zhiyi
    Chen, Mingyang
    Yu, Jiahao
    Cheng, Yun
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [35] MEDICAL IMAGE SEGMENTATION BASED ON MULTI-MODAL CONVOLUTIONAL NEURAL NETWORK: STUDY ON IMAGE FUSION SCHEMES
    Guo, Zhe
    Li, Xiang
    Huang, Heng
    Guo, Ning
    Li, Quanzheng
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 903 - 907
  • [36] Medical image segmentation network based on a multisize convolutional kernel association strategy
    Lu, Zhihao
    Liu, Mingyang
    Cai, Biao
    Liu, Mingzhe
    Xu, Xinyi
    MEDICAL PHYSICS, 2025,
  • [37] An improved wavelet neural network medical image segmentation algorithm with combined maximum entropy
    Hu, Xiaoqian
    Tao, Jinxu
    Ye, Zhongfu
    Qiu, Bensheng
    Xu, Jinzhang
    6TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, MANUFACTURING, MODELING AND SIMULATION (CDMMS 2018), 2018, 1967
  • [38] From CNN to Transformer: A Review of Medical Image Segmentation Models
    Yao, Wenjian
    Bai, Jiajun
    Liao, Wei
    Chen, Yuheng
    Liu, Mengjuan
    Xie, Yao
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (04): : 1529 - 1547
  • [39] MR-Trans: MultiResolution Transformer for medical image segmentation
    Zou, Yibo
    Ge, Yan
    Zhao, Linlin
    Li, Wei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 165
  • [40] A review of convolutional neural network based methods for medical image classification
    Chen, Chao
    Mat Isa, Nor Ashidi
    Liu, Xin
    Computers in Biology and Medicine, 2025, 185