Global bounded solution of a 3D chemotaxis-Stokes system with nonlinear doubly degenerate diffusion

被引:1
作者
Zhou, Xindan [1 ,2 ]
Li, Zhongping [1 ,2 ]
机构
[1] China West Normal Univ, Coll Math & Informat, Nanchong 637009, Peoples R China
[2] China West Normal Univ, Sch Math & Informat, Sichuan Coll & Univ Key Lab Optimizat Theory & App, Nanchong 637009, Peoples R China
关键词
Chemotaxis-Stokes system; Nonlinear diffusion; Boundedness; Global existence; KELLER-SEGEL MODELS; BLOW-UP; EXISTENCE; STABILIZATION;
D O I
10.1016/j.jmaa.2023.127401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper considers the following chemotaxis-Stokes system with nonlinear doubly degenerate diffusion {n(t) + u center dot del n = del center dot (vertical bar del n(m)vertical bar(p-2) del n(m)) - chi del center dot (n del c), x is an element of Omega, t > 0, c(t) + u center dot del c = Delta c - cn, x is an element of Omega, t > 0, u(t) + del P = Delta u + n del Phi, x is an element of Omega, t > 0, del center dot u - 0, in a bounded domain Omega subset of R-3 with zero-flux boundary conditions and no-slip boundary condition. In this paper, we proved that global bounded weak solutions exist whenever m > 1 and p >= 2. It removes the restrict 8mp - 8m + 3p > 15 and improves the result of paper Lin (2022) [15]. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
[41]   Global well-posedness of axisymmetric solution to the 3D axisymmetric chemotaxis-Navier-Stokes equations with logistic source [J].
Zhang, Qian ;
Zheng, Xiaoxin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 :576-612
[42]   Global existence and boundedness in a 3D Keller–Segel–Stokes system with nonlinear diffusion and rotational flux [J].
Yingping Peng ;
Zhaoyin Xiang .
Zeitschrift für angewandte Mathematik und Physik, 2017, 68
[43]   Global weak solutions in a three-dimensional degenerate chemotaxis-Navier-Stokes system modeling coral fertilization [J].
Liu, Ji .
NONLINEARITY, 2020, 33 (07) :3237-3267
[44]   Global bounded solution in an attraction repulsion Chemotaxis-Navier-Stokes system with Neumann and Dirichlet boundary conditions [J].
Xu, Luli ;
Mu, Chunlai ;
Zhang, Minghua ;
Zhang, Jing .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 82
[45]   Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary [J].
Peng, Yingping ;
Xiang, Zhaoyin .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (05) :869-920
[46]   Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow p-Laplacian diffusion [J].
Tao, Weirun ;
Li, Yuxiang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 :26-52
[47]   Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion [J].
Zhang, Qingshan ;
Li, Yuxiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) :3730-3754
[48]   Global existence and boundedness of weak solutions to a chemotaxis-Stokes system with rotational flux term [J].
Li, Feng ;
Li, Yuxiang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (04)
[49]   Global existence of weak solutions for the 3D chemotaxis-Navier-Stokes equations [J].
He, Haibin ;
Zhang, Qian .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 :336-349
[50]   Global large-data generalized solutions in a two-dimensional chemotaxis-Stokes system with singular sensitivity [J].
Wang, Yilong .
BOUNDARY VALUE PROBLEMS, 2016,