Global bounded solution of a 3D chemotaxis-Stokes system with nonlinear doubly degenerate diffusion

被引:1
作者
Zhou, Xindan [1 ,2 ]
Li, Zhongping [1 ,2 ]
机构
[1] China West Normal Univ, Coll Math & Informat, Nanchong 637009, Peoples R China
[2] China West Normal Univ, Sch Math & Informat, Sichuan Coll & Univ Key Lab Optimizat Theory & App, Nanchong 637009, Peoples R China
关键词
Chemotaxis-Stokes system; Nonlinear diffusion; Boundedness; Global existence; KELLER-SEGEL MODELS; BLOW-UP; EXISTENCE; STABILIZATION;
D O I
10.1016/j.jmaa.2023.127401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper considers the following chemotaxis-Stokes system with nonlinear doubly degenerate diffusion {n(t) + u center dot del n = del center dot (vertical bar del n(m)vertical bar(p-2) del n(m)) - chi del center dot (n del c), x is an element of Omega, t > 0, c(t) + u center dot del c = Delta c - cn, x is an element of Omega, t > 0, u(t) + del P = Delta u + n del Phi, x is an element of Omega, t > 0, del center dot u - 0, in a bounded domain Omega subset of R-3 with zero-flux boundary conditions and no-slip boundary condition. In this paper, we proved that global bounded weak solutions exist whenever m > 1 and p >= 2. It removes the restrict 8mp - 8m + 3p > 15 and improves the result of paper Lin (2022) [15]. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 32 条
[1]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[3]   Blow-up, Concentration Phenomenon and Global Existence for the Keller-Segel Model in High Dimension [J].
Calvez, Vincent ;
Corrias, Lucilla ;
Ebde, Mohamed Abderrahman .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) :561-584
[4]   Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) :1205-1235
[5]   Prevention of blow-up by fast diffusion in chemotaxis [J].
Choi, Yung-Sze ;
Wang, Zhi-an .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) :553-564
[6]   CHEMOTAXIS-FLUID COUPLED MODEL FOR SWIMMING BACTERIA WITH NONLINEAR DIFFUSION: GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR [J].
Di Francesco, Marco ;
Lorz, Alexander ;
Markowich, Peter A. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) :1437-1453
[7]   Global Solutions to the Coupled Chemotaxis-Fluid Equations [J].
Duan, Renjun ;
Lorz, Alexander ;
Markowich, Peter .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) :1635-1673
[8]   On the Stokes operator in general unbounded domains [J].
Farwig, Reinhard ;
Kozono, Hideo ;
Sohr, Hermann .
HOKKAIDO MATHEMATICAL JOURNAL, 2009, 38 (01) :111-136
[9]  
Hieber M, 1997, COMMUN PART DIFF EQ, V22, P1647
[10]   CROSS DIFFUSION PREVENTING BLOW-UP IN THE TWO-DIMENSIONAL KELLER-SEGEL MODEL [J].
Hittmeir, Sabine ;
Juengel, Ansgar .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) :997-1022