Complete convergence theorems for moving average process generated by independent random variables under sub-linear expectations

被引:2
作者
Chen, Xiaocong [1 ]
Wu, Qunying [1 ]
机构
[1] Guilin Univ Technol, Coll Sci, Guilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Moving average process; complete integral convergence; independent random variables; sub-linear expectation; DEPENDENT RANDOM-VARIABLES; COMPLETE MOMENT CONVERGENCE; G-BROWNIAN MOTION; STOCHASTIC CALCULUS; WEIGHTED SUMS; INEQUALITIES;
D O I
10.1080/03610926.2023.2220449
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The research of convergence properties of moving average process is a challenging field of limit theorems. The aim of this article is to provide a method to prove the complete convergence and complete integral convergence of moving average process for independent random variables in sub-linear expectation space. The results obtained in the article are the extensions of some complete convergence theorems under classical probability space.
引用
收藏
页码:5378 / 5404
页数:27
相关论文
共 26 条
[1]   Complete convergence for weighted sums of widely orthant-dependent random variables [J].
Chen, Pingyan ;
Sung, Soo Hak .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
[2]   Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations [J].
Chen, Xiaocong ;
Wu, Qunying .
AIMS MATHEMATICS, 2022, 7 (06) :9694-9715
[3]  
Chow YS., 1988, Bull Inst Math Acad Sin, V16, P177
[4]   ON COMPLETE CONVERGENCE FOR EXTENDED INDEPENDENT RANDOM VARIABLES UNDER SUB-LINEAR EXPECTATIONS [J].
Deng, Xin ;
Wang, Xuejun .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (03) :553-570
[5]   Complete moment convergence of moving average processes for m-WOD sequence [J].
Guan, Lihong ;
Xiao, Yushan ;
Zhao, Yanan .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
[6]   COMPLETE CONVERGENCE AND THE LAW OF LARGE NUMBERS [J].
HSU, PL ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1947, 33 (02) :25-31
[7]  
Ibragimov I.A., 1962, Theory of Probability & Its Applications, V7, P349, DOI DOI 10.1137/1107036
[8]   COMPLETE CONVERGENCE OF MOVING AVERAGE PROCESSES [J].
LI, DL ;
RAO, MB ;
WANG, XC .
STATISTICS & PROBABILITY LETTERS, 1992, 14 (02) :111-114
[9]  
Peng S, 2007, ABEL SYMP, V2, P541
[10]   Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations [J].
Peng ShiGe .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (07) :1391-1411