Big-Data-Driven Machine Learning for Enhancing Spatiotemporal Air Pollution Pattern Analysis

被引:17
|
作者
Zareba, Mateusz [1 ]
Dlugosz, Hubert [1 ]
Danek, Tomasz [1 ]
Weglinska, Elzbieta [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Geol Geophys & Environm Protect, Dept Geoinformat & Appl Comp Sci, PL-30059 Krakow, Poland
关键词
big data; machine learning; spatiotemporal; air pollution; pattern analysis; time series; SPATIAL ASSOCIATION;
D O I
10.3390/atmos14040760
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Air pollution is an important problem for public health. The spatiotemporal analysis is a crucial step for understanding the complex characteristics of air pollution. Using many sensors and high-resolution time-step observations makes this task a big data challenge. In this study, unsupervised machine learning algorithms were applied to analyze spatiotemporal patterns of air pollution. The analysis was conducted using PM10 big data collected from almost 100 sensors located in Krakow, over a period of one year, with data being recorded at 1-h intervals. The analysis results using K-means and SKATER clustering revealed distinct differences between average and maximum values of pollutant concentrations. The study found that the K-means algorithm with Dynamic Time Warping (DTW) was more accurate in identifying yearly patterns and clustering in rapidly and spatially varying data, compared to the SKATER algorithm. Moreover, the clustering analysis of data after kriging greatly facilitated the interpretation of the results. These findings highlight the potential of machine learning techniques and big data analysis for identifying hot-spots, coldspots, and patterns of air pollution and informing policy decisions related to urban planning, traffic management, and public health interventions.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran
    Z. Ghaemi
    A. Alimohammadi
    M. Farnaghi
    Environmental Monitoring and Assessment, 2018, 190
  • [32] Big data analytics and machine learning: A retrospective overview and bibliometric analysis
    Zhang, Justin Zuopeng
    Srivastava, Praveen Ranjan
    Sharma, Dheeraj
    Eachempati, Prajwal
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184
  • [33] Big-Data-Driven and AI-Based Framework to Enable Personalization in Wireless Networks
    Alkurd, Rawan
    Abualhaol, Ibrahim
    Yanikomeroglu, Halim
    IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (03) : 18 - 24
  • [34] Machine Learning and Integrative Analysis of Biomedical Big Data
    Mirza, Bilal
    Wang, Wei
    Wang, Jie
    Choi, Howard
    Chung, Neo Christopher
    Ping, Peipei
    GENES, 2019, 10 (02)
  • [35] Correlation Analysis of Big Data to Support Machine Learning
    Pandey, Rajiv
    Dhoundiyal, Manoj
    Kumar, Amrendra
    2015 FIFTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT2015), 2015, : 996 - 999
  • [36] Big data and machine learning for materials science
    Rodrigues J.F., Jr.
    Florea L.
    de Oliveira M.C.F.
    Diamond D.
    Oliveira O.N., Jr.
    Discover Materials, 1 (1):
  • [37] A survey of machine learning for big data processing
    Junfei Qiu
    Qihui Wu
    Guoru Ding
    Yuhua Xu
    Shuo Feng
    EURASIP Journal on Advances in Signal Processing, 2016
  • [38] Automated Trading with Machine Learning on Big Data
    Ruta, Dymitr
    2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 824 - 830
  • [39] Machine Learning Research in Big Data Environment
    Jiang, Shi
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL & ELECTRONICS ENGINEERING AND COMPUTER SCIENCE (ICEEECS 2018), 2018, : 227 - 231
  • [40] A survey of machine learning for big data processing
    Qiu, Junfei
    Wu, Qihui
    Ding, Guoru
    Xu, Yuhua
    Feng, Shuo
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2016,