Optimised Spintronic Emitters of Terahertz Radiation for Time-Domain Spectroscopy

被引:5
作者
Wagner, Ford M. [1 ]
Melnikas, Simas [2 ]
Cramer, Joel [3 ]
Damry, Djamshid A. [1 ]
Xia, Chelsea Q. [1 ]
Peng, Kun [1 ]
Jakob, Gerhard [3 ]
Klaeui, Mathias [3 ]
Kicas, Simonas [2 ]
Johnston, Michael B. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] Ctr Phys Sci & Technol, Savanoriu Ave 231, LT-02300 Vilnius, Lithuania
[3] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
THz-TDS; Spintronic; Terahertz; Spintronic emitters; Reflective coatings; MOBILITY; GAAS;
D O I
10.1007/s10762-022-00897-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spintronic metal thin films excited by femtosecond laser pulses have recently emerged as excellent broadband sources of terahertz (THz) radiation. Unfortunately, these emitters transmit a significant proportion of the incident excitation laser, which causes two issues: first, the transmitted light can interfere with measurements and so must be attenuated; second, the transmitted light is effectively wasted as it does not drive further THz generation. Here, we address both issues with the inclusion of a high-reflectivity (HR) coating made from alternating layers of SiO2 and Ta2O5. Emitters with the HR coating transmit less than 0.1% of the incident excitation pulse. Additionally, we find that the HR coating increases the peak THz signal by roughly 35%, whereas alternative attenuating elements, such as cellulose nitrate films, reduce the THz signal. To further improve the emission, we study the inclusion of an anti-reflective coating to the HR-coated emitters and find the peak THz signal is enhanced by a further 4%.
引用
收藏
页码:52 / 65
页数:14
相关论文
共 50 条
  • [1] Optimised Spintronic Emitters of Terahertz Radiation for Time-Domain Spectroscopy
    Ford M. Wagner
    Simas Melnikas
    Joel Cramer
    Djamshid A. Damry
    Chelsea Q. Xia
    Kun Peng
    Gerhard Jakob
    Mathias Kläui
    Simonas Kičas
    Michael B. Johnston
    Journal of Infrared, Millimeter, and Terahertz Waves, 2023, 44 : 52 - 65
  • [2] Measurement of coherent terahertz radiation for time-domain spectroscopy and imaging
    Kuroda, R.
    Yasumoto, M.
    Sei, N.
    Toyokawa, H.
    Ikeura-Sekiguchi, H.
    Ogawa, H.
    Koike, M.
    Yamada, K.
    RADIATION PHYSICS AND CHEMISTRY, 2009, 78 (12) : 1102 - 1105
  • [3] Polarimetric terahertz time-domain spectroscopy
    Gong, Yandong
    Dong, Hui
    PHOTONICS AND OPTOELECTRONICS MEETINGS (POEM) 2011: LASER AND TERAHERTZ SCIENCE AND TECHNOLOGY, 2012, 8330
  • [4] Terahertz study of trichloroanisole by time-domain spectroscopy
    Hor, Yew Li
    Lim, Hee C.
    Federici, John F.
    Moore, Eric
    Bozzelli, Joseph W.
    CHEMICAL PHYSICS, 2008, 353 (1-3) : 185 - 188
  • [5] Terahertz time-domain spectroscopy of edible oils
    Dinovitser, Alex
    Valchev, Dimitar G.
    Abbott, Derek
    ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (06):
  • [6] Terahertz time-domain spectroscopy for explosive imaging
    Zhang, Zhengwei
    Zhang, Yan
    Zhao, Guozhong
    Zhang, Cunlin
    OPTIK, 2007, 118 (07): : 325 - 329
  • [7] Terahertz time-domain spectroscopy study of explosives
    Wang, XH
    Guo, LT
    Hu, Y
    PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL V, PTS A AND B, 2005, 5 : 2263 - 2266
  • [8] Terahertz Time-Domain Spectroscopy of Organic Semiconductors
    Hailu, Daniel M.
    Aziz, Hany
    Safavi-Naeini, Safieddin
    Saeedkia, Daryoosh
    TERAHERTZ, RF, MILLIMETER, AND SUBMILLIMETER-WAVE TECHNOLOGY AND APPLICATIONS VI, 2013, 8624
  • [9] Development and validation of a terahertz time-domain spectroscopy measurement chip
    Zhao, Ya-Ping
    Su, Bo
    Wu, Rui
    Cui, Hai-Lin
    Zhang, Cun-Lin
    OPTICAL ENGINEERING, 2020, 59 (09)
  • [10] Terahertz time-domain spectroscopy for non-destructive testing
    Globisch, Bjoern
    Nellen, Simon
    Kohlhaas, Robert B.
    Liebermeister, Lars
    Schell, Martin
    TERAHERTZ, RF, MILLIMETER, AND SUBMILLIMETER-WAVE TECHNOLOGY AND APPLICATIONS XI, 2018, 10531