Deep Learning-Assisted Droplet Digital PCR for Quantitative Detection of Human Coronavirus

被引:8
|
作者
Lee, Young Suh [1 ]
Choi, Ji Wook [1 ]
Kang, Taewook [2 ,3 ]
Chung, Bong Geun [1 ,3 ]
机构
[1] Sogang Univ, Dept Mech Engn, Seoul 04107, South Korea
[2] Sogang Univ, Dept Chem & Biomol Engn, Seoul 04107, South Korea
[3] Sogang Univ, Inst Integrated Biotechnol, Seoul 04107, South Korea
基金
新加坡国家研究基金会;
关键词
ddPCR; Image processing; Deep learning; Mask R-CNN; GMM clustering;
D O I
10.1007/s13206-023-00095-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Since coronavirus disease 2019 (COVID-19) pandemic rapidly spread worldwide, there is an urgent demand for accurate and suitable nucleic acid detection technology. Although the conventional threshold-based algorithms have been used for processing images of droplet digital polymerase chain reaction (ddPCR), there are still challenges from noise and irregular size of droplets. Here, we present a combined method of the mask region convolutional neural network (Mask R-CNN)-based image detection algorithm and Gaussian mixture model (GMM)-based thresholding algorithm. This novel approach significantly reduces false detection rate and achieves highly accurate prediction model in a ddPCR image processing. We demonstrated that how deep learning improved the overall performance in a ddPCR image processing. Therefore, our study could be a promising method in nucleic acid detection technology.
引用
收藏
页码:112 / 119
页数:8
相关论文
共 50 条
  • [1] Deep Learning-Assisted Droplet Digital PCR for Quantitative Detection of Human Coronavirus
    Young Suh Lee
    Ji Wook Choi
    Taewook Kang
    Bong Geun Chung
    BioChip Journal, 2023, 17 : 112 - 119
  • [2] Droplet Digital PCR for Quantitative Detection of Escherichia Coli
    Yang, Jiayi
    Fu, Boqiang
    Niu, Chunyan
    Wang, Jing
    INTERNATIONAL SYMPOSIUM ON THE FRONTIERS OF BIOTECHNOLOGY AND BIOENGINEERING (FBB 2019), 2019, 2110
  • [3] Deep Learning-Assisted OFDM Detection with Hardware Impairments
    Singh A.
    Sharma S.
    Deka K.
    Bhatia V.
    Journal of Communications and Information Networks, 2023, 8 (04) : 378 - 388
  • [4] Deep learning-assisted IoMT framework for cerebral microbleed detection
    Ali, Zeeshan
    Naz, Sheneela
    Yasmin, Sadaf
    Bukhari, Maryam
    Kim, Mucheol
    HELIYON, 2023, 9 (12)
  • [5] Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp citri
    Zhao, Yun
    Xia, Qingyan
    Yin, Youping
    Wang, Zhongkang
    PLOS ONE, 2016, 11 (07):
  • [6] Comparison of pathogens DNA detection by digital droplet PCR (ddPCR) and quantitative PCR (qPCR)
    Moucadel, V
    Prudent, S.
    Broyer, P.
    Tarendeau, F.
    INFECTION, 2013, 41 : S44 - S44
  • [7] Comparison of Droplet Digital PCR to Real-Time PCR for Quantitative Detection of Cytomegalovirus
    Hayden, R. T.
    Gu, Z.
    Ingersoll, J.
    Abdul-Ali, D.
    Shi, L.
    Pounds, S.
    Caliendo, A. M.
    JOURNAL OF CLINICAL MICROBIOLOGY, 2013, 51 (02) : 540 - 546
  • [8] Droplet digital PCR as a useful tool for the quantitative detection of Enterovirus 71
    Lui, Yan Long Edmund
    Tan, Eng Lee
    JOURNAL OF VIROLOGICAL METHODS, 2014, 207 : 200 - 203
  • [9] Deep Learning-Assisted OFDM Channel Estimation and Signal Detection Technology
    Li, Jun
    Zhang, Zhichen
    Wang, Yukai
    He, Bo
    Zheng, Wenjing
    Li, Mingming
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (05) : 1347 - 1351
  • [10] Deep Learning-Assisted Quantitative Measurement of Thoracolumbar Fracture Features on Lateral Radiographs
    Yuh, Woon Tak
    Khil, Eun Kyung
    Yoon, Yu Sung
    Kim, Burnyoung
    Yoon, Hongjun
    Lim, Jihe
    Lee, Kyoung Yeon
    Yoo, Yeong Seo
    An, Kyeong Deuk
    NEUROSPINE, 2024, 21 (01) : 30 - 43