Numerical difference solution of moving boundary random Stefan problems

被引:5
|
作者
Casaban, M. -C. [1 ]
Company, R. [1 ]
Jodar, L. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Bldg 8G,access C,2nd floor,Camino Vera S N, Valencia 46022, Spain
关键词
Random Stefan problems; Mean square calculus; Front fixing; Finite difference; Finite degree of randomness;
D O I
10.1016/j.matcom.2022.10.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper deals with the construction of numerical solutions of moving boundary random problems where the uncertainty is limited to a finite degree of randomness in the mean square framework. Using a front fixing approach the problem is firstly transformed into a fixed boundary one. Then a random finite difference scheme for both the partial differential equation and the Stefan condition, allows the discretization. Since statistical moments of the approximate stochastic process solution are required, we combine the sample approach of the difference schemes together with Monte Carlo technique to perform manageable approximations of the expectation and variance of both the approximating stochastic process solution and the stochastic moving boundary solution. Qualitative and reliability properties such as positivity, monotonicity and stability in the mean square sense are treated. Feasibility of the proposed method is checked with illustrative examples of a melting problem and a binary metallic alloys problems.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in Simulation (IMACS). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:878 / 901
页数:24
相关论文
共 50 条
  • [1] On a class of reciprocal Stefan moving boundary problems
    Colin Rogers
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2069 - 2079
  • [2] On a class of reciprocal Stefan moving boundary problems
    Rogers, Colin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 2069 - 2079
  • [3] Consistent Dirichlet boundary conditions for numerical solution of moving boundary problems
    Hubbard, M. E.
    Baines, M. J.
    Jimack, P. K.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (06) : 1337 - 1353
  • [4] NUMERICAL-SOLUTION OF STEFAN PROBLEMS
    CROWLEY, AB
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1978, 21 (02) : 215 - 219
  • [5] Numerical solution of Stefan problems in annuli
    Caldwell, J
    Chan, CC
    ADVANCED COMPUTATIONAL METHODS IN HEAT TRANSFER VI, 2000, 3 : 215 - 225
  • [6] The numerical solution of moving.boundary problems using the moving finite element method
    Robalo, R
    Sereno, C
    Coimbra, MDC
    Rodrigues, A
    European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b : 79 - 84
  • [7] Numerical Solution of a Class of Moving Boundary Problems with a Nonlinear Complementarity Approach
    Grigori Chapiro
    Angel E. R. Gutierrez
    José Herskovits
    Sandro R. Mazorche
    Weslley S. Pereira
    Journal of Optimization Theory and Applications, 2016, 168 : 534 - 550
  • [8] Numerical Solution of a Class of Moving Boundary Problems with a Nonlinear Complementarity Approach
    Chapiro, Grigori
    Gutierrez, Angel E. R.
    Herskovits, Jose
    Mazorche, Sandro R.
    Pereira, Weslley S.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 168 (02) : 534 - 550
  • [9] On the numerical solution of a class of variable coefficients parabolic moving boundary problems
    Morteza Garshasbi
    Javad Sharafi
    Journal of Applied Mathematics and Computing, 2023, 69 : 2509 - 2530
  • [10] On the numerical solution of a class of variable coefficients parabolic moving boundary problems
    Garshasbi, Morteza
    Sharafi, Javad
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (03) : 2509 - 2530