Efficient Perturbation Inference and Expandable Network for continual learning

被引:9
|
作者
Du, Fei [1 ]
Yang, Yun [2 ]
Zhao, Ziyuan [3 ]
Zeng, Zeng [3 ,4 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650091, Peoples R China
[2] Yunnan Univ, Natl Pilot Sch Software, Kunming 650091, Peoples R China
[3] ASTAR, Inst Infocomm Res I2R, Singapore 138632, Singapore
[4] Shanghai Univ, Sch Microelect, Shanghai, Peoples R China
关键词
Continual learning; Dynamic networks; Class incremental learning; Uncertainty inference;
D O I
10.1016/j.neunet.2022.10.030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental results show that our method consistently outperforms other methods with fewer parameters in class incremental learning benchmarks. For example, on the CIFAR100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy of 65.93% within only 3.46M average parameters.(c) 2022 Published by Elsevier Ltd.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 50 条
  • [1] On Sequential Bayesian Inference for Continual Learning
    Kessler, Samuel
    Cobb, Adam
    Rudner, Tim G. J.
    Zohren, Stefan
    Roberts, Stephen J.
    ENTROPY, 2023, 25 (06)
  • [2] Poster: Continual Network Learning
    Di Cicco, Nicola
    Al Sadi, Amir
    Grasselli, Chiara
    Melis, Andrea
    Antichi, Gianni
    Tornatore, Massimo
    PROCEEDINGS OF THE 2023 ACM SIGCOMM 2023 CONFERENCE, SIGCOMM 2023, 2023, : 1096 - 1098
  • [3] Differentiable Prototypes with Distributed Memory Network for Continual Learning
    Kwak, Min-Seo
    Moon, Hyung-Jun
    Cho, Sung-Bae
    HYBRID ARTIFICIAL INTELLIGENT SYSTEM, PT I, HAIS 2024, 2025, 14857 : 286 - 298
  • [4] EsaCL: An Efficient Continual Learning Algorithm
    Ren, Weijieying
    Honavar, Vasant G.
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 163 - 171
  • [5] Efficient Architecture Search for Continual Learning
    Gao, Qiang
    Luo, Zhipeng
    Klabjan, Diego
    Zhang, Fengli
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8555 - 8565
  • [6] Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning
    Gao, Xinyuan
    Dong, Songlin
    He, Yuhang
    Wang, Qiang
    Gong, Yihong
    COMPUTER VISION - ECCV 2024, PT LXXXV, 2025, 15143 : 89 - 106
  • [7] Computationally Efficient Rehearsal for Online Continual Learning
    Davalas, Charalampos
    Michail, Dimitrios
    Diou, Christos
    Varlamis, Iraklis
    Tserpes, Konstantinos
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 39 - 49
  • [8] Continual learning for adaptive social network identification
    Magistri, Simone
    Baracchi, Daniele
    Shullani, Dasara
    Bagdanov, Andrew D.
    Piva, Alessandro
    PATTERN RECOGNITION LETTERS, 2024, 180 : 82 - 89
  • [9] Certified Continual Learning for Neural Network Regression
    Pham, Long H.
    Sun, Jun
    PROCEEDINGS OF THE 33RD ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, ISSTA 2024, 2024, : 806 - 818
  • [10] Continual Learning for Remote Physiological Measurement: Minimize Forgetting and Simplify Inference
    Liang, Qian
    Chen, Yan
    Hu, Yang
    COMPUTER VISION - ECCV 2024, PT XXXVI, 2025, 15094 : 126 - 144