Mixed local and nonlocal equations with measure data

被引:13
作者
Byun, Sun-Sig [1 ,2 ]
Song, Kyeong [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
ELLIPTIC-EQUATIONS; REGULARITY THEORY; DIRICHLET FORMS; CONTINUITY; POTENTIALS;
D O I
10.1007/s00526-022-02349-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear measure data problems involving elliptic operators modeled after the mixed local and nonlocal p-Laplacian. We establish existence, regularity and Wolff potential estimates for solutions. As a consequence, we are able to obtain Calderon-Zygmund type estimates and continuity criteria for solutions.
引用
收藏
页数:35
相关论文
共 48 条
[1]  
Barlow MT, 2009, T AM MATH SOC, V361, P1963
[2]  
Biagi S, 2022, Arxiv, DOI arXiv:2103.11382
[3]   A Hong-Krahn-Szego inequality for mixed local and nonlocal operators [J].
Biagi, Stefano ;
Dipierro, Serena ;
Valdinoci, Enrico ;
Vecchi, Eugenio .
MATHEMATICS IN ENGINEERING, 2023, 5 (01)
[4]   Mixed local and nonlocal elliptic operators: regularity and maximum principles [J].
Biagi, Stefano ;
Dipierro, Serena ;
Valdinoci, Enrico ;
Vecchi, Eugenio .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (03) :585-629
[5]   Semilinear elliptic equations involving mixed local and nonlocal operators [J].
Biagi, Stefano ;
Vecchi, Eugenio ;
Dipierro, Serena ;
Valdinoci, Enrico .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (05) :1611-1641
[6]  
BOCCARDO L, 1992, COMMUN PART DIFF EQ, V17, P641
[7]   NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA [J].
BOCCARDO, L ;
GALLOUET, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) :149-169
[8]   Higher Holder regularity for the fractional p-Laplacian in the superquadratic case [J].
Brasco, Lorenzo ;
Lindgren, Erik ;
Schikorra, Armin .
ADVANCES IN MATHEMATICS, 2018, 338 :782-846
[9]   Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case [J].
Brasco, Lorenzo ;
Lindgren, Erik .
ADVANCES IN MATHEMATICS, 2017, 304 :300-354
[10]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260