Plus/minus p-adic L-functions for GL2n

被引:0
作者
Rockwood, Rob [1 ]
机构
[1] Univ Warwick, Zeeman Bldg, Coventry CV4 7HP, W Midlands, England
来源
ANNALES MATHEMATIQUES DU QUEBEC | 2023年 / 47卷 / 01期
关键词
P-adic L-functions; Automorphic forms; Iwasawa theory; FAMILIES;
D O I
10.1007/s40316-021-00191-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalise Pollack's construction of plus/minus L-functions to certain cuspidal automorphic representations of GL(2n) using the p-adic L-functions constructed in work of Barrera Salazar et al. (On p-adic J-functions for GL(2n) in finite slope shalika families, 2021). We use these to prove that the complex L-functions of such representations vanish at at most finitely many twists by characters of p-power conductor.
引用
收藏
页码:177 / 193
页数:17
相关论文
共 19 条
[1]   Generic transfer for general spin groups [J].
Asgari, M ;
Shahidi, F .
DUKE MATHEMATICAL JOURNAL, 2006, 132 (01) :137-190
[2]  
BarreraSalazar D., 2021, ARXIV PREPRINT ARXIV
[3]  
Buyukboduk K., 2018, ARXIV PREPRINT ARXIV
[4]   P-adic Banach spaces and families of modular forms [J].
Coleman, RF .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :417-479
[5]  
Colmez Pierre, 2010, ASTERISQUE, V330, P13
[6]  
Deligne P., 1979, P S PURE MATH, P313
[7]   L-functions of GL2n: p-adic properties and non-vanishing of twists [J].
Dimitrov, Mladen ;
Januszewski, Fabian ;
Raghuram, A. .
COMPOSITIO MATHEMATICA, 2021, 156 (12) :2437-2468
[8]   ON THE ARITHMETIC OF SHALIKA MODELS AND THE CRITICAL VALUES OF L-FUNCTIONS FOR GL2n [J].
Grobner, Harald ;
Raghuram, A. .
AMERICAN JOURNAL OF MATHEMATICS, 2014, 136 (03) :675-728
[9]  
Hida H., 1998, Automorphic Induction and Leopoldt Type Conjectures for, V2, P667, DOI DOI 10.4310/AJM.1998.V2.N4.A5
[10]   NON-VANISHING THEOREM FOR ZETA FUNCTIONS OF GLN [J].
JACQUET, H ;
SHALIKA, JA .
INVENTIONES MATHEMATICAE, 1976, 38 (01) :1-16