Ni-functionalized Ca@Si yolk-shell nanoreactors for enhanced integrated CO2 capture and dry reforming of methane via confined catalysis

被引:23
作者
Sun, Shuzhuang [1 ,2 ,3 ]
Wang, Yuanyuan [2 ]
Xu, Yikai [2 ,4 ]
Sun, Hongman [5 ]
Zhao, Xiaotong [2 ]
Zhang, Yingrui [2 ]
Yang, Xiaoxiao [3 ]
Bie, Xuan [3 ]
Wu, Mengna [3 ]
Zhang, Chen [2 ,6 ]
Zhu, Yuan [2 ]
Xu, Yongqing [3 ]
Zhou, Hui [3 ,7 ]
Wu, Chunfei [2 ]
机构
[1] Zhengzhou Univ, Sch Chem Engn, Zhengzhou 450001, Peoples R China
[2] Queens Univ Belfast, Sch Chem & Chem Engn, Belfast BT7 1NN, North Ireland
[3] Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Beijing Key Lab CO2 Utilizat & Reduct Technol,Mini, Beijing 100084, Peoples R China
[4] East China Univ Sci & Technol, Key Lab Adv Mat & Feringa Nobel Prize Scientist Jo, Frontiers Sci Ctr Materiobiol & Dynam Chem, Sch Chem & Mol Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
[5] China Univ Petr, Coll Chem & Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
[6] SINOPEC Econ & Dev Res Institue Co Ltd, Beijing 100029, Peoples R China
[7] Tsinghua Univ, Shanxi Res Inst Clean Energy, Taiyuan 030000, Shanxi, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2024年 / 348卷
基金
中国国家自然科学基金;
关键词
Dual functional material; Yolk-shell nanoreactor; Confined catalysis; Integrated CO2 capture and utilization; Dry reforming of methane; Ni-carbonates interface; CALCIUM-CARBONATE; PARTICLE-SIZE; PRECIPITATION; CONVERSION; SORBENTS; SPECTROSCOPY; TEMPERATURE; MORPHOLOGY; BEHAVIOR; ZEOLITE;
D O I
10.1016/j.apcatb.2024.123838
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The emerging integrated CO2 capture and utilization (ICCU) potentially contributes to net zero emissions with low cost and high efficiency. The catalytic performance in ICCU process is highly restricted by the equilibriums of carbonate decomposition and dry reforming of methane (DRM). Here, we engineer a unique yolk-shell dual functional nanoreactor construction to improve the catalytic performance via confined catalysis. By tailoring the carbonates decomposition kinetics and confining the CO2 diffusion path, -> 92% CO2 conversion is achieved over (Ni/Ca)@Si and shows no distinct activity loss in 10 cycles at 650 degrees C. The formed Ca2SiO4 shells restrain the sintering of CaO yolks by acting as physical barriers, and stabilize the Ni particle size. It is also confirmed on in situ DRIFTS that the integrated DRM might occur via carbonyls, formates and CHO intermediates, in which formates species are highly dependent on Ni-carbonates interfaces.
引用
收藏
页数:15
相关论文
共 23 条
  • [1] Yolk-Shell Nanocapsule Catalysts as Nanoreactors with Various Shell Structures and Their Diffusion Effect on the CO2 Reforming of Methane
    Wang, Changzhen
    Wu, Hao
    Jie, Xiangyu
    Zhang, Xiaoming
    Zhao, Yongxiang
    Yao, Benzhen
    Xiao, Tiancun
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (27) : 31699 - 31709
  • [2] Photothermal Dry Reforming of Methane on Yolk-Shell Co-Ni Alloy@SiO2 Catalyst
    El-Naggar, Hamada A.
    Takami, Daichi
    Asanuma, Hisashi
    Hirata, Takafumi
    Yoshida, Hisao
    Yamamoto, Akira
    CHEMCATCHEM, 2024,
  • [3] Upgrading CO2 from simulated power plant flue gas via integrated CO2 capture and dry reforming of methane using Ni-CaO
    Sun, Shuzhuang
    Zhang, Yingrui
    Li, Chunchun
    Wang, Yuanyuan
    Zhang, Chen
    Zhao, Xiaotong
    Sun, Hongman
    Wu, Chunfei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 308
  • [4] Ni@ZrO2 yolk-shell catalyst for CO2 methane reforming: Effect of Ni@SiO2 size as the hard-template
    Lim, Zi-Yian
    Tu, Junling
    Xu, Yongjun
    Chen, Baiman
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 590 : 641 - 651
  • [5] Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming
    Hu, Jiawei
    Hongmanorom, Plaifa
    Galvita, Vladimir V.
    Li, Zhan
    Kawi, Sibudjing
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 284
  • [6] Self-Regenerative Ni-Doped CaTiO3/CaO for Integrated CO2 Capture and Dry Reforming of Methane
    Jo, Seongbin
    Gilliard-AbdulAziz, Kandis Leslie
    SMALL, 2024, 20 (36)
  • [7] Ni stabilised on inorganic complex structures: superior catalysts for chemical CO2 recycling via dry reforming of methane
    le Sache, E.
    Pastor-Perez, L.
    Watson, D.
    Sepulveda-Escribano, A.
    Reina, T. R.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 236 : 458 - 465
  • [8] Confined high dispersion of Ni nanoparticles derived from nickel phyllosilicate structure in silicalite-2 shell for dry reforming of methane with enhanced performance
    Lu, Yao
    Guo, Dan
    Zhao, Yifan
    Moyo, Perseverence S.
    Zhao, Yujun
    Wang, Shengping
    Ma, Xinbin
    MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 313
  • [9] Improving the anti-coking ability in the Ni-M(M = Ce, Zr, Co)@SiO2 yolk-shell catalysts for dry reforming of methane
    Yang, Xiao
    Yang, Zhuwei
    Li, Linsen
    Jiang, Zhao
    Cheng, Guangxu
    FUEL, 2024, 368
  • [10] CO2 conversion via dry reforming of methane on a core-shell Ru@SiO2 catalyst
    Yang, Juanjuan
    Wang, Jiaqi
    Zhao, Jingjing
    Bai, Yuan
    Du, Haoran
    Wang, Qian
    Jiang, Bo
    Li, Hexing
    JOURNAL OF CO2 UTILIZATION, 2022, 57