Koszul property of Ulrich bundles and rationality of moduli spaces of stable bundles on Del Pezzo surfaces

被引:0
|
作者
Bangere, Purnaprajna [1 ]
Mukherjee, Jayan [2 ]
Raychaudhury, Debaditya [3 ,4 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS USA
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[3] Univ Toronto, Dept Math, Toronto, ON, Canada
[4] Univ Arizona, Dept Math, Tucson, AZ USA
基金
美国国家科学基金会;
关键词
VECTOR-BUNDLES; TANGENT BUNDLE; EXISTENCE;
D O I
10.1007/s00229-023-01530-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a vector bundle on a smooth projective variety X subset of P-N that is Ulrich with respect to the hyperplane section H. In this article, we study the Koszul property of E, the slope-semistability of the k-th iterated syzygy bundle S-k (E) for all k >= 0 and rationality of moduli spaces of slope-stable bundles on Del Pezzo surfaces. As a consequence of our study, we show that if X is a Del Pezzo surface of degree d >= 4, then any Ulrich bundle E satisfies the Koszul property and is slope-semistable. We also show that, for infinitely many Chern characters v = (r, c(1), c(2)), the corresponding moduli spaces of slope-stable bundles M-H(v) when non-empty, are rational, and thereby produce new evidences for a conjecture of Costa and Miro-Roig. As a consequence, we show that the iterated syzygy bundles of Ulrich bundles are dense in these moduli spaces.
引用
收藏
页码:847 / 874
页数:28
相关论文
共 50 条