Regularity of minimizers for free-discontinuity problems with p(<middle dot>)-growth

被引:4
作者
Leone, Chiara [1 ]
Scilla, Giovanni [1 ]
Solombrino, Francesco [1 ]
Verde, Anna [1 ]
机构
[1] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Via Cintia Monte S Angelo, I-80126 Naples, Italy
关键词
Free-discontinuity problems; p(x)-growth; regularity; minimizers; VARIABLE EXPONENT; FUNCTIONALS; CALCULUS; LEBESGUE; THEOREM; SPACES;
D O I
10.1051/cocv/2023062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A regularity result for free-discontinuity energies defined on the space SBVp(<middle dot>) of special functions of bounded variation with variable exponent is proved, under the assumption of a log-Holder continuity for the variable exponent p(x). Our analysis expands on the regularity theory for minimizers of a class of free-discontinuity problems in the nonstandard growth case. This may be seen as a follow-up of the paper N. Fusco et al., J. Convex Anal. 8 (2001) 349-367, dealing with a constant exponent.
引用
收藏
页数:24
相关论文
共 38 条
[31]   Maximal regularity for local minimizers of non-autonomous functionals [J].
Hasto, Peter ;
Ok, Jihoon .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (04) :1285-1334
[32]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[33]   Variable exponent functionals in image restoration [J].
Li, Fang ;
Li, Zhibin ;
Pi, Ling .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (03) :870-882
[34]   OPTIMAL APPROXIMATIONS BY PIECEWISE SMOOTH FUNCTIONS AND ASSOCIATED VARIATIONAL-PROBLEMS [J].
MUMFORD, D ;
SHAH, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (05) :577-685
[35]  
Scilla G, 2023, CALC VAR PARTIAL DIF, V62, DOI 10.1007/s00526-023-02549-9
[36]  
ZHIKOV VV, 1986, MATH USSR IZV+, V50, P33
[37]  
Zhikov VV, 1997, RUSS J MATH PHYS, V5, P105
[38]  
ZHIKOV VV, 1982, DOKL AKAD NAUK SSSR+, V267, P524