Regularity of minimizers for free-discontinuity problems with p(<middle dot>)-growth

被引:4
作者
Leone, Chiara [1 ]
Scilla, Giovanni [1 ]
Solombrino, Francesco [1 ]
Verde, Anna [1 ]
机构
[1] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Via Cintia Monte S Angelo, I-80126 Naples, Italy
关键词
Free-discontinuity problems; p(x)-growth; regularity; minimizers; VARIABLE EXPONENT; FUNCTIONALS; CALCULUS; LEBESGUE; THEOREM; SPACES;
D O I
10.1051/cocv/2023062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A regularity result for free-discontinuity energies defined on the space SBVp(<middle dot>) of special functions of bounded variation with variable exponent is proved, under the assumption of a log-Holder continuity for the variable exponent p(x). Our analysis expands on the regularity theory for minimizers of a class of free-discontinuity problems in the nonstandard growth case. This may be seen as a follow-up of the paper N. Fusco et al., J. Convex Anal. 8 (2001) 349-367, dealing with a constant exponent.
引用
收藏
页数:24
相关论文
共 38 条
[1]   Relaxation of convex functional:: The gap problem [J].
Acerbi, E ;
Bouchitté, G ;
Fonseca, I .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (03) :359-390
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]  
Acerbi E., 2001, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V30, P311
[4]  
Almi S, 2023, Arxiv, DOI arXiv:2301.07406
[5]  
AMBROSIO L, 1989, B UNIONE MAT ITAL, V3B, P857
[6]   EXISTENCE THEORY FOR A NEW CLASS OF VARIATIONAL-PROBLEMS [J].
AMBROSIO, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (04) :291-322
[7]  
Ambrosio L., 2000, OX MATH M, pxviii
[8]  
[Anonymous], 1983, Constructive Function Theory
[9]  
Campanato Sergio., 1963, ANN SCUOLA NORM-SCI, V17, P175
[10]  
CARRIERO M., 1991, Ann. Scuola Norm. Sup. Pisa, V18, P321