Conversion of Surface Residual Alkali to Solid Electrolyte to Enable Na-Ion Full Cells with Robust Interfaces

被引:77
作者
Xu, Weiliang [1 ,2 ]
Dang, Rongbin [1 ]
Zhou, Lin [1 ,3 ]
Yang, Yang [1 ,4 ]
Lin, Ting [1 ]
Guo, Qiubo [1 ]
Xie, Fei [1 ]
Hu, Zilin [1 ,4 ]
Ding, Feixiang [1 ,3 ]
Liu, Yunpeng [1 ,3 ,4 ]
Liu, Yuan
Mao, Huican [1 ]
Hong, Juan [2 ]
Zuo, Zhanchun [1 ]
Wang, Xiaoqi [6 ]
Yang, Rui [6 ]
Jin, Xu [6 ]
Hou, Xueyan [1 ]
Lu, Yaxiang [1 ,5 ]
Rong, Xiaohui [1 ,3 ]
Xu, Ning [2 ]
Hu, Yong-Sheng [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Yancheng Inst Technol, Coll Mech Engn, Yancheng 224051, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Huairou Div, Beijing 101400, Peoples R China
[4] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, Inst High Energy Phys IHEP, Beijing 100049, Peoples R China
[6] PetroChina, PetroChina Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
关键词
Na-ion batteries; residual alkali; reversible phase transitions; solid electrolytes; CATHODE MATERIALS; TRANSITION;
D O I
10.1002/adma.202301314
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The deposition of volatilized Na+ on the surface of the cathode during sintering results in the formation of surface residual alkali (NaOH/Na2CO3NaHCO3) in layered cathode materials, leading to serious interfacial reactions and performance degradation. This phenomenon is particularly evident in O3-NaNi0.4Cu0.1Mn0.4Ti0.1O2 (NCMT). In this study, a strategy is proposed to transform waste into treasure by converting residual alkali into a solid electrolyte. Mg(CH3COO)(2) and H3PO4 are reacted with surface residual alkali to generate the solid electrolyte NaMgPO4 on the surface of NCMT, which can be labeled as NaMgPO4@NaNi0.4Cu0.1Mn0.4Ti0.1O2-X (NMP@NCMT-X, where X indicates the different amounts of Mg2+ and PO43-). NaMgPO4 acts as a special ionic conductivity channel on the surface to improve the kinetics of the electrode reactions, remarkably improving the rate capability of the modified cathode at a high current density in the half-cell. Additionally, NMP@NCMT-2 enables a reversible phase transition from the P3 to OP2 phase in the charge-discharge process above 4.2 V and achieves a high specific capacity of 157.3 mAh g(-1) and outstanding capacity retention in the full cell. The strategy can effectively and reliably stabilize the interface and improve the performance of layered cathodes for Na-ion batteries (NIBs).
引用
收藏
页数:9
相关论文
共 37 条
[1]   The crystal structures of NaMgPO4, Na2CaMg(PO4)2 and Na18Ca13Mg5(PO4)18:: new examples for glaserite related structures [J].
Alkemper, J ;
Fuess, H .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1998, 213 (05) :282-287
[2]   Synthesis and characterization of basic catalysts based on sodium-magnesium mixed phosphates and their use in the conversion of 2-hexanol [J].
Aramendía, MA ;
Borau, V ;
Jiménez, C ;
Marinas, JM ;
Romero, FJ ;
Urbano, FJ .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 240 (01) :237-244
[3]   Remarkable influence of alkaline earth ions on the enhancement of fluorescence from EU3+ ion doped in sodium ortho-phosphate phosphors [J].
Balakrishna, A. ;
Reddy, L. ;
Ntwaeaborwa, O. M. ;
Swart, H. C. .
JOURNAL OF MOLECULAR STRUCTURE, 2020, 1203
[4]   Study of luminescent behavior and crystal defects of different MNa[PO4]-Dy3+ phosphors (M = Mg, Ca, Sr and Ba) [J].
Balakrishna, A. ;
Ntwaeaborwa, O. M. .
SENSORS AND ACTUATORS B-CHEMICAL, 2017, 242 :305-317
[5]   High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode [J].
Deng, Jianqiu ;
Luo, Wen-Bin ;
Lu, Xiao ;
Yao, Qingrong ;
Wang, Zhongmin ;
Liu, Hua-Kun ;
Zhou, Huaiying ;
Dou, Shi-Xue .
ADVANCED ENERGY MATERIALS, 2018, 8 (05)
[6]   Chemically converting residual lithium to a composite coating layer to enhance the rate capability and stability of single-crystalline Ni-rich cathodes [J].
Du, Ya-Hao ;
Sheng, Hang ;
Meng, Xin-Hai ;
Zhang, Xu-Dong ;
Zou, Yu-Gang ;
Liang, Jia-Yan ;
Fan, Min ;
Wang, Fuyi ;
Tang, Jilin ;
Cao, Fei-Fei ;
Shi, Ji-Lei ;
Cao, Xiu-Fang ;
Guo, Yu-Guo .
NANO ENERGY, 2022, 94
[7]   Investigation of Ti-substitution and MnPO4 coating effects on structural and electrochemical properties of P2-Na0.67TixNi0.33Mn0.67-xO2 cathode materials [J].
Feng, Jie ;
Luo, Shao-hua ;
Sun, Mengyao ;
Cong, Jun ;
Yan, Shengxue ;
Wang, Qing ;
Zhang, Yahui ;
Liu, Xin ;
Mu, Wenning ;
Hou, Peng-qing .
APPLIED SURFACE SCIENCE, 2022, 600
[8]   Polyvinylpyrrolidone-Induced Uniform Surface-Conductive Polymer Coating Endows Ni-Rich LiNi0.8Co0.1Mn0.1O2 with Enhanced Cyclability for Lithium-Ion Batteries [J].
Gan, Qingmeng ;
Qin, Ning ;
Zhu, Youhuan ;
Huang, Zixuan ;
Zhang, Fangchang ;
Gu, Shuai ;
Xie, Jiwei ;
Zhang, Kaili ;
Lu, Li ;
Lu, Zhouguang .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (13) :12594-12604
[9]   Improved High Rate Performance and Cycle Performance of Al-Doped O3-Type NaNi0.5Mn0.5O2 Cathode Materials for Sodium-Ion Batteries [J].
Hong, Ningyun ;
Wu, Kang ;
Peng, Zhengjun ;
Zhu, Zenghu ;
Jia, Guofeng ;
Wang, Min .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (42) :22925-22933
[10]   Lanthanide-Doped Core@Multishell Nanoarchitectures: Multimodal Excitable Upconverting/Downshifting Luminescence and High-Level Anti-Counterfeiting [J].
Huang, Hai ;
Chen, Jiangkun ;
Liu, Yutong ;
Lin, Jidong ;
Wang, Shaoxiong ;
Huang, Feng ;
Chen, Daqin .
SMALL, 2020, 16 (19)