Transient Polarization and Dendrite Initiation Dynamics in Ceramic Electrolytes

被引:4
作者
Gopal, Rajeev [1 ]
Wu, Longan [1 ]
Lee, Youngju [1 ]
Guo, Jinzhao [2 ]
Bai, Peng [1 ,3 ]
机构
[1] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA
[2] Washington Univ, Dept Mech Engn & Mat Sci, St Louis, MO 63130 USA
[3] Washington Univ, Inst Mat Sci & Engn, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
SOLID-ELECTROLYTE; PROPAGATION; CONDUCTIVITY; INTERFACE; GROWTH;
D O I
10.1021/acsenergylett.3c00499
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state electrolytes combined with lithium-metal anodes have the potential to improve the energy density of lithium-ion batteries. However, soft Li metal can still penetrate these stiff electrolytes above a critical current density (CCD). Prevailing methods to determine CCD suffer inconsistencies due to void formations after repeated stripping and plating, leaving significant variations in reported data. Here, we combine one-way linear sweep voltammetry (LSV) with electrochemical impedance spectroscopy (EIS) to uncover the existence of significant polarization in ceramic electrolytes, which can fully relax even without stacking pressure. At high scan rates, LSV experiments showed metal penetration with a diverging transient current, similar to CCD values. However, at a lowered scan rate, the transient current reaches a maximum, suggesting a dynamic electrochemical limiting mechanism. The results and analysis of many consistent samples suggest that polarization of mobile charge carriers preceding the maximum current is critical for accurately understanding dendrite penetration in ceramic electrolytes.
引用
收藏
页码:2141 / 2149
页数:9
相关论文
共 54 条
[1]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[2]  
Bard A.J., 2001, ELECTROCHEMICAL METH, DOI DOI 10.1016/B978-0-12-381373-2.00056-9
[3]   ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS [J].
CHAZALVIEL, JN .
PHYSICAL REVIEW A, 1990, 42 (12) :7355-7367
[4]  
Chen C., 2023, SMALL, V19
[5]   Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte [J].
Cheng, Eric Jianfeng ;
Sharafi, Asma ;
Sakamoto, Jeff .
ELECTROCHIMICA ACTA, 2017, 223 :85-91
[6]   Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes [J].
Cheng, Lei ;
Chen, Wei ;
Kunz, Martin ;
Persson, Kristin ;
Tamura, Nobumichi ;
Chen, Guoying ;
Doeff, Marca .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (03) :2073-2081
[7]   Microstructure and Li-Ion Conductivity of Hot- Pressed Cubic Li7La3Zr2O12 [J].
David, Isabel N. ;
Thompson, Travis ;
Wolfenstine, Jeff ;
Allen, Jan L. ;
Sakamoto, Jeff .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2015, 98 (04) :1209-1214
[8]   Space-Charge Layers in All-Solid-State Batteries; Important or Negligible? [J].
de Klerk, Niek J. J. ;
Wagemaker, Marnix .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (10) :5609-5618
[9]   Superionic Diffusion through Frustrated Energy Landscape [J].
Di Stefano, Davide ;
Miglio, Anna ;
Robeyns, Koen ;
Filinchuk, Yaroslav ;
Lechartier, Marine ;
Senyshyn, Anatoliy ;
Ishida, Hiroyuki ;
Spannenberger, Stefan ;
Prutsch, Denise ;
Lunghammer, Sarah ;
Rettenwander, Daniel ;
Wilkening, Martin ;
Roling, Bernhard ;
Kato, Yuki ;
Hautier, Geoffroy .
CHEM, 2019, 5 (09) :2450-2460
[10]   High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes [J].
Han, Fudong ;
Westover, Andrew S. ;
Yue, Jie ;
Fan, Xiulin ;
Wang, Fei ;
Chi, Miaofang ;
Leonard, Donovan N. ;
Dudney, Nancyj ;
Wang, Howard ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (03) :187-196