Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape

被引:70
作者
Kitata, Reta Birhanu [1 ]
Yang, Jhih-Ci [1 ,2 ,3 ,4 ]
Chen, Yu-Ju [1 ,2 ,3 ,5 ]
机构
[1] Acad Sinica, Inst Chem, Taipei 11529, Taiwan
[2] Acad Sinica, Taiwan Int Grad Program, Sustainable Chem Sci & Technol, Taipei, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Taipei, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu, Taiwan
[5] Natl Taiwan Univ, Dept Chem, Taipei, Taiwan
关键词
data-independent acquisition (DIA); mass spectrometry; proteomics; RETENTION TIME; TARGETED ANALYSIS; PROCESSING STRATEGIES; AFFINITY PURIFICATION; DIA-MS; QUANTIFICATION; PEPTIDE; IDENTIFICATION; LIBRARY; CANCER;
D O I
10.1002/mas.21781
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The data-independent acquisition mass spectrometry (DIA-MS) has rapidly evolved as a powerful alternative for highly reproducible proteome profiling with a unique strength of generating permanent digital maps for retrospective analysis of biological systems. Recent advancements in data analysis software tools for the complex DIA-MS/MS spectra coupled to fast MS scanning speed and high mass accuracy have greatly expanded the sensitivity and coverage of DIA-based proteomics profiling. Here, we review the evolution of the DIA-MS techniques, from earlier proof-of-principle of parallel fragmentation of all-ions or ions in selected m/z range, the sequential window acquisition of all theoretical mass spectra (SWATH-MS) to latest innovations, recent development in computation algorithms for data informatics, and auxiliary tools and advanced instrumentation to enhance the performance of DIA-MS. We further summarize recent applications of DIA-MS and experimentally-derived as well as in silico spectra library resources for large-scale profiling to facilitate biomarker discovery and drug development in human diseases with emphasis on the proteomic profiling coverage. Toward next-generation DIA-MS for clinical proteomics, we outline the challenges in processing multi-dimensional DIA data set and large-scale clinical proteomics, and continuing need in higher profiling coverage and sensitivity.
引用
收藏
页码:2324 / 2348
页数:25
相关论文
共 163 条
  • [41] Impact of the Identification Strategy on the Reproducibility of the DDA and DIA Results
    Fernandez-Costa, Carolina
    Martinez-Bartolome, Salvador
    McClatchy, Daniel B.
    Saviola, Anthony J.
    Yu, Nam-Kyung
    Yates, John R., III
    [J]. JOURNAL OF PROTEOME RESEARCH, 2020, 19 (08) : 3153 - 3161
  • [42] Data-independent acquisition-based proteome and phosphoproteome profiling across six melanoma cell lines reveals determinants of proteotypes
    Gao, Erli
    Li, Wenxue
    Wu, Chongde
    Shao, Wenguang
    Di, Yi
    Liu, Yansheng
    [J]. MOLECULAR OMICS, 2021, 17 (03) : 413 - 425
  • [43] Quantitative proteomics by SWATH-MS reveals sophisticated metabolic reprogramming in hepatocellular carcinoma tissues
    Gao, Yanyan
    Wang, Xinzheng
    Sang, Zhihong
    Li, Zongcheng
    Liu, Feng
    Mao, Jie
    Yan, Dan
    Zhao, Yongqiang
    Wang, Hongli
    Li, Ping
    Ying, Xiaomin
    Zhang, Xuemin
    He, Kun
    Wang, Hongxia
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [44] Proteomics on an Orbitrap Benchtop Mass Spectrometer Using All-ion Fragmentation
    Geiger, Tamar
    Cox, Juergen
    Mann, Matthias
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2010, 9 (10) : 2252 - 2261
  • [45] Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning
    Gessulat, Siegfried
    Schmidt, Tobias
    Zolg, Daniel Paul
    Samaras, Patroklos
    Schnatbaum, Karsten
    Zerweck, Johannes
    Knaute, Tobias
    Rechenberger, Julia
    Delanghe, Bernard
    Huhmer, Andreas
    Reimer, Ulf
    Ehrlich, Hans-Christian
    Aiche, Stephan
    Kuster, Bernhard
    Wilhelm, Mathias
    [J]. NATURE METHODS, 2019, 16 (06) : 509 - +
  • [46] Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis
    Gillet, Ludovic C.
    Navarro, Pedro
    Tate, Stephen
    Roest, Hannes
    Selevsek, Nathalie
    Reiter, Lukas
    Bonner, Ron
    Aebersold, Ruedi
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (06)
  • [47] Proteome Analysis of Human Neutrophil Granulocytes From Patients With Monogenic Disease Using Data-independent Acquisition
    Grabowski, Piotr
    Hesse, Sebastian
    Hollizeck, Sebastian
    Rohlfs, Meino
    Behrends, Uta
    Sherkat, Roya
    Tamary, Hannah
    Unal, Ekrem
    Somech, Raz
    Patiroglu, Turkan
    Canzar, Stefan
    Ten Bosch, Jutte van der Werff
    Klein, Christoph
    Rappsilber, Juri
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (04) : 760 - 772
  • [48] Prediction of LC-MS/MS Properties of Peptides from Sequence by Deep Learning
    Guan, Shenheng
    Moran, Michael F.
    Ma, Bin
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (10) : 2099 - 2107
  • [49] Data Dependent-Independent Acquisition (DDIA) Proteomics
    Guan, Shenheng
    Taylor, Paul P.
    Han, Ziwei
    Moran, Michael F.
    Ma, Bin
    [J]. JOURNAL OF PROTEOME RESEARCH, 2020, 19 (08) : 3230 - 3237
  • [50] Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines
    Guo, Tiannan
    Luna, Augustin
    Rajapakse, Vinodh N.
    Koh, Ching Chiek
    Wu, Zhicheng
    Liu, Wei
    Sun, Yaoting
    Gao, Huanhuan
    Menden, Michael P.
    Xu, Chao
    Calzone, Laurence
    Martignetti, Loredana
    Auwerx, Chiara
    Buljan, Marija
    Banaei-Esfahani, Amir
    Ori, Alessandro
    Iskar, Murat
    Gillet, Ludovic
    Bi, Ran
    Zhang, Jiangnan
    Zhang, Huanhuan
    Yu, Chenhuan
    Zhong, Qing
    Varma, Sudhir
    Schmitt, Uwe
    Qiu, Peng
    Zhang, Qiushi
    Zhu, Yi
    Wild, Peter J.
    Garnett, Mathew J.
    Bork, Peer
    Beck, Martin
    Liu, Kexin
    Saez-Rodriguez, Julio
    Elloumi, Fathi
    Reinhold, William C.
    Sander, Chris
    Pommier, Yves
    Aebersold, Ruedi
    [J]. ISCIENCE, 2019, 21 : 664 - +