Semantic segmentation of remote sensing images combined with attention mechanism and feature enhancement U-Net

被引:6
|
作者
Jiang, Jionghui [1 ,2 ]
Feng, Xi'an [1 ,6 ]
Ye, QiLei [3 ,7 ]
Hu, Zhongyi [4 ]
Gu, Zhiyang [5 ]
Huang, Hui [4 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian, Peoples R China
[2] ZheJiang Univ Technol, ZhiJiang Coll, Coll Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
[3] Wenzhou Big Data Dev Adm, Data Resources Ctr, Wenzhou, Peoples R China
[4] Wenzhou Univ, Coll Comp Sci & Artificial Intelligence, Chashan Higher Educ Pk, Wenzhou 325035, Peoples R China
[5] Wenzhou Polytech, Sch Intelligent Mfg, Wenzhou, Peoples R China
[6] Northwestern Polytech Univ, Marine Sci & Technol, Xian, Peoples R China
[7] Wenzhou Big Data Dev Adm, Wenzhou, Peoples R China
关键词
Semantic Segmentation; Remote Sensing Images; Attention Mechanism; ALGORITHM;
D O I
10.1080/01431161.2023.2264502
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Target segmentation of remote sensing images has always been a hotspot in image processing. This paper proposes a new semantic segmentation technology for remote sensing images, which uses Unet as the backbone and combines attention mechanism and feature enhancement module. The feature enhancement module can enlarge the information of the region of interest (ROI) to improve the contrast of the image; the attention mechanism includes spatial and channel attention modules, which can obtain more detailed information of the desired target while suppressing other useless information. This paper improves the loss function of the traditional Unet. On the basis of the sparse categorical cross-entropy function, the mean squared logarithmic error function is added, which can effectively improve the accuracy of semantic segmentation. The experimental results show that the algorithm has higher computational accuracy than Unet, DeepLabV3, SegNet, PSPNet, CBAM and DAnet while having the computational speed of FCN and Unet in model testing and validation.
引用
收藏
页码:6219 / 6232
页数:14
相关论文
共 50 条
  • [41] POI Detection of High-Rise Buildings Using Remote Sensing Images: A Semantic Segmentation Method Based on Multitask Attention Res-U-Net
    Li, Bingnan
    Gao, Jiuchong
    Chen, Shuiping
    Lim, Samsung
    Jiang, Hai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [42] HANet: Hierarchical Attention Network for Remote Sensing Images Semantic Segmentation
    Zhang, Hongming
    Yang, Guang
    Gao, Zhengjie
    Shen, Yinwei
    Tang, Hengao
    Wang, Tao
    Han, Yamin
    PATTERN RECOGNITION AND COMPUTER VISION, PT XIII, PRCV 2024, 2025, 15043 : 386 - 400
  • [43] Modified U-Net architecture for semantic segmentation of diabetic retinopathy images
    Sambyal, Nitigya
    Saini, Poonam
    Syal, Rupali
    Gupta, Varun
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (03) : 1094 - 1109
  • [44] A Frequency Domain Feature-Guided Network for Semantic Segmentation of Remote Sensing Images
    Li, Xin
    Xu, Feng
    Gao, Hongmin
    Liu, Fan
    Lyu, Xin
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1369 - 1373
  • [45] SEMANTIC SEGMENTATION OF UAV IMAGES BASED ON U-NET IN URBAN AREA
    Majidizadeh, A.
    Hasani, H.
    Jafari, M.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 451 - 457
  • [46] Semantic segmentation of high-resolution remote sensing images based on a class feature attention mechanism fused with Deeplabv3+
    Wang, Zhimin
    Wang, Jiasheng
    Yang, Kun
    Wang, Limeng
    Su, Fanjie
    Chen, Xinya
    COMPUTERS & GEOSCIENCES, 2022, 158
  • [47] Multi-U-Net: Residual Module under Multisensory Field and Attention Mechanism Based Optimized U-Net for VHR Image Semantic Segmentation
    Ran, Si
    Ding, Jianli
    Liu, Bohua
    Ge, Xiangyu
    Ma, Guolin
    SENSORS, 2021, 21 (05) : 1 - 14
  • [48] A semantic segmentation method for remote sensing images based on multiple contextual feature extraction
    He Shumeng
    Xu Gaodi
    Yang Houqun
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (02)
  • [49] Building Extraction from Remote Sensing Images Based on Improved U-Net
    Jin Shu
    Guan Mo
    Bian Yuchan
    Wang Shulei
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (04)
  • [50] SE2Net: semantic segmentation of remote sensing images based on self-attention and edge enhancement modules
    Liu, Songlin
    Gao, Kai
    Qin, Jinchun
    Gong, Hui
    Wang, Haiyan
    Zhang, Li
    Gong, Danchao
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (02)