In memoriam Professor Charles E. Chidume (1947-2021) Most continuous and increasing functions have two different fixed points

被引:1
作者
Reich, Simeon [1 ]
Zaslavski, Lexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Continuous function; fixed point; generic property; increasing function; APPROXIMATION;
D O I
10.37193/CJM.2023.01.15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the space of all continuous and increasing self-mappings of the real interval [0,1] equipped with the topology of uniform convergence. In particular, we show that most such functions have at least two different fixed points.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 24 条
[1]  
[Anonymous], 1972, Approximate Solution of Operator Equations
[2]  
Banach S., 1922, Fundamenta Mathematicae, V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[3]  
Betiuk-Pilarska A., 2016, Pure Appl. Func. Anal., V1, P343
[4]  
Censor Y., 2018, Pure Appl. Func. Anal., V3, P565
[5]   Generic Existence and Approximation of Fixed Points for Nonexpansive Set-valued Maps [J].
de Blasi, Francesco S. ;
Myjak, Jozef ;
Reich, Simeon ;
Zaslavski, Alexander J. .
SET-VALUED AND VARIATIONAL ANALYSIS, 2009, 17 (01) :97-112
[6]  
DEBLASI FS, 1976, CR ACAD SCI A MATH, V283, P185
[7]   Outer approximation methods for solving variational inequalities in Hilbert space [J].
Gibali, Aviv ;
Reich, Simeon ;
Zalas, Rafal .
OPTIMIZATION, 2017, 66 (03) :417-437
[8]  
Goebel K., 1984, Uniform convexity, hyperbolic geometry, and nonexpansive mappings
[9]  
Goebel K., 1990, TOPICS METRIC FIXED
[10]  
Jachymski J., 2017, Pure Appl. Funct. Anal., V2, P657