Existence of solutions to quasilinear Schrodinger equations with exponential nonlinearity

被引:0
作者
Severo, Uberlandio B. [1 ]
Ribeiro, Bruno H. C. [2 ]
Germano, Diogo de S. [3 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
[3] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429970 Campina Grande, PB, Brazil
关键词
Quasilinear Schrodinger equation; fixed point theorem; Trudinger-Moser inequalit; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; CRITICAL GROWTH; MULTIPLICITY;
D O I
10.58997/ejde.2023.14
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the existence of solutions to quasilinear Schrodinger equations in the plane, involving a potential that can change sign and a nonlinear term that may be discontinuous and exhibit exponential critical growth. To prove our existence result, we combine the Trudinger-Moser inequality with a fixed point theorem
引用
收藏
页码:1 / 14
页数:14
相关论文
共 28 条
[1]   Existence of positive solutions for a class of nonhomogeneous elliptic equations in RN [J].
Adachi, S ;
Tanaka, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (05) :685-705
[2]  
Albuquerque FSB, 2015, ADV NONLINEAR STUD, V15, P23
[3]  
Brull L., 1986, Exposition Math, V4, P279
[4]  
Cao DM, 1996, P ROY SOC EDINB A, V126, P443
[5]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[6]   Elliptic problems with lack of compactness via a new fixed point theorem [J].
Carl, S ;
Heikkilä, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 186 (01) :122-140
[7]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[8]  
de Souza M, 2014, TOPOL METHOD NONL AN, V44, P399
[9]   Ground state solutions for generalized quasilinear Schrodinger equations without (AR) condition [J].
Deng, Yinbin ;
Huang, Wentao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (02) :927-945
[10]   Critical exponents and solitary wave solutions for generalized quasilinear Schrodinger equations [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) :1228-1262