High strain rate plastic deformation driven microstructure evolution in AlCoCrFeNi dual-phase high entropy alloy

被引:6
|
作者
Cui, C. Y. [1 ]
Yang, J. [1 ]
Chen, L. [1 ]
Shen, P. [1 ]
Li, X. D. [1 ]
Lu, J. Z. [1 ]
机构
[1] Jiangsu Univ, Sch Mech Engn, Zhenjiang 212013, Peoples R China
关键词
High entropy alloy (HEA); Laser shock processing (LSP); Microstructure evolution; Plastic deformation; Microhardness; MECHANICAL-PROPERTIES; AL ADDITION; PRECIPITATION; BEHAVIOR;
D O I
10.1016/j.intermet.2023.108085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High strain rate plastic deformation under laser shock processing (LSP) has been applied to the AlCoCrFeNi dual-phase high entropy alloy (HEA) for optimizing the microstructure and properties. Phase constituents, micro-structure evolution of the HEA before and after LSP were investigated. Microstructures of the HEA samples were examined using scanning electron microscopy and transmission electron microscopy. Results showed that the microstructure in the LSPed region was obviously refined. High density dislocations were produced in the alloy and dislocation slip was the main plastic deformation mode during LSP treatment. When the laser energy increased to 5 J and 7 J, nano-precipitates, twins and stacking faults appeared, and the plastic deformation mode was a mixture of deformation twinning and dislocation slip. The refined grains, dislocation structures, deformation-induced twins and stacking faults were analyzed and associated with the microhardness. The microhardness of the HEA was significantly improved after LSP, which can be attributed to the synergistic strengthening of grain refining strengthening, precipitation strengthening and dislocation strengthening.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Hot deformation behavior and microstructure evolution of TC11 dual-phase titanium alloy
    Chai, Zaixian
    Wang, William Yi
    Ren, Yong
    Wang, Xinzhao
    Zhang, Ying
    Sun, Feng
    Hao, Fang
    Li, Jinshan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 898
  • [42] Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys
    Fang, Qihong
    Chen, Yang
    Li, Jia
    Jiang, Chao
    Liu, Bin
    Liu, Yong
    Liaw, Peter K.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 114 : 161 - 173
  • [43] Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment
    Yu, Yuan
    Shi, Peiying
    Feng, Kai
    Liu, Jiongjie
    Cheng, Jun
    Qiao, Zhuhui
    Yang, Jun
    Li, Jinshan
    Liu, Weimin
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2020, 33 (08) : 1077 - 1090
  • [44] Effect of temperature and strain rate on the deformation behaviour and microstructure of Al0.7CoCrFeNi high entropy alloy
    John, Rahul
    Dash, Manmath Kumar
    Murty, B. S.
    Fabijanic, Daniel
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 856
  • [45] Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy
    Park, Jeong Min
    Moon, Jongun
    Bae, Jae Wung
    Jang, Min Ji
    Park, Jaeyeong
    Lee, Sunghak
    Kim, Hyoung Seop
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 719 : 155 - 163
  • [46] Tuning microstructure via cold deformation and annealing for superb mechanical properties in Al0.5CoFeCrNiSi0.25 dual-phase high-entropy alloys
    Li, Zhanjiang
    Fu, Peixin
    Chen, Li
    Chen, Junfeng
    Chang, Fa
    Dai, Pinqiang
    Tang, Qunhua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 880
  • [47] High strength and ductility in a dual-phase hetero-structured AlCoCrFeNi2.1 eutectic high-entropy alloy by powder metallurgy
    Peng, Siyuan
    Feng, Shuai
    Jiang, Zhenfei
    Ren, Jie
    Zhang, Shengbiao
    Liu, Yanfang
    Zhang, Liang
    He, Wenyi
    Liu, Zhongqiang
    Guan, Shuai
    Xiao, Zhiyu
    Chen, Wen
    MATERIALS RESEARCH LETTERS, 2024, 12 (05): : 363 - 372
  • [48] Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes
    Yang, Hao-Xue
    Li, Jin-Shan
    Guo, Tong
    Wang, William-Yi
    Kou, Hong-Chao
    Wang, Jun
    RARE METALS, 2020, 39 (02) : 156 - 161
  • [49] AlCoCrFeNi-NiTi high entropy alloy composites: Microstructure and wear performance
    Ghanbariha, M.
    Farvizi, M.
    Ebadzadeh, T.
    Samiyan, A. Alizadeh
    Kim, H. S.
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [50] Experimental investigation and crystal plasticity modelling of dynamic recrystallisation in dual-phase high entropy alloy during hot deformation
    Zhou, Zixin
    Huo, Yuanming
    Wang, Zhijun
    Demir, Eralp
    Jiang, Anqi
    Yan, Zhenrong
    He, Tao
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 922